![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}\ge0\)
\(\Leftrightarrow\frac{x^2+2xy+y^2-4xy}{xy\left(x+y\right)}\ge0\)
\(\Leftrightarrow\frac{\left(x-y\right)^2}{xy\left(x+y\right)}\ge0\)
Ta thấy : \(\orbr{\begin{cases}\left(x-y\right)^2\ge0\\xy\left(x+y\right)\ge0\end{cases}\Leftrightarrow dpcm}\)
TK MK NKA !!!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\)
<=>\(\frac{x+y}{xy}>=\frac{4}{x+y}\)
<=>\(\left(x+y\right)^2>=4xy< =>\left(x-y\right)^2>=0.\)(luôn đúng)
dấu "=" xảy ra khi x=y
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(\Rightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\)
\(\Rightarrow\frac{\left(x+y\right)\left(x+y\right)}{xy\left(x+y\right)}\ge\frac{4xy}{xy\left(x+y\right)}\)
\(\Rightarrow\left(x+y\right)^2=4xy\)
Dấu ''='' chỉ xảy ra khi x=y=1
![](https://rs.olm.vn/images/avt/0.png?1311)
nếu đề bài có sai thì mong sửa giúp và trả lời hộ mình nha
![](https://rs.olm.vn/images/avt/0.png?1311)
Sửa đề: \(\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\ge\dfrac{3}{4}\)
Đặt \(P=\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)
\(P=\dfrac{x+1}{x+1}-\dfrac{1}{x+1}+\dfrac{y+1}{y+1}-\dfrac{1}{y+1}+\dfrac{z+1}{z+1}-\dfrac{1}{z+1}\)
\(P=1-\dfrac{1}{x+1}+1-\dfrac{1}{y+1}+1-\dfrac{1}{z+1}\)
\(P=3-\left(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\right)\)
Ta có:
\(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{9}{x+y+z+3}\)
\(\Leftrightarrow\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{9}{4}\) ( vì \(x+y+z=1\) )
\(\Rightarrow P\ge3-\dfrac{9}{4}=\dfrac{3}{4}\left(đpcm\right)\)
Dấu "=" xảy ra khi \(x+1=y+1=z+1\)
\(\Leftrightarrow x=y=z=\dfrac{1}{3}\)
Vậy \(Max_P=\dfrac{3}{4}\) khi \(x=y=z=\dfrac{1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^3+y^3=\left(x+y\right)^3-3\left(xy\right)\left(x+y\right)=1-3xy\)
Có: \(xy\le\frac{\left(x+y\right)^2}{4}\)với mọi x, y
Chứng minh: \(xy\le\frac{\left(x+y\right)^2}{4}\Leftrightarrow x^2+y^2+2xy\ge4xy\Leftrightarrow\left(x-y\right)^2\ge0\)đúng với mọi x, y.
=> \(xy\le\frac{1}{4}\)=> \(-3xy\ge-\frac{3}{4}\)
=> \(x^3+y^3=\left(x+y\right)^3-3\left(xy\right)\left(x+y\right)=1-3xy\ge1-\frac{3}{4}=\frac{1}{4}\)
"=" xảy ra <=> (x -y)^2 =0 <=> x =y.
Áp dụng BĐT Svácxơ, ta có:
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{\left(1+1\right)^2}{x+y}=\dfrac{4}{x+y}\)
\(\Rightarrow\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge\dfrac{1}{x+y}\)
Dấu "="⇔ \(x=y\)