K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2023

a) Ta có \(\widehat{AHK}=\dfrac{sđ\stackrel\frown{AE}+sđ\stackrel\frown{BD}}{2}\) 

và \(\widehat{AKH}=\dfrac{sđ\stackrel\frown{CE}+sđ\stackrel\frown{AD}}{2}\)

 Mặt khác, do D, E lần lượt là điểm chính giữa của cung AB, AC nên \(sđ\stackrel\frown{AD}=sđ\stackrel\frown{BD};sđ\stackrel\frown{AE}=sđ\stackrel\frown{CE}\). Từ đó \(\Rightarrow\widehat{AHK}=\widehat{AKH}\) hay tam giác AHK cân tại A (đpcm).

 b) Hiển nhiên I là tâm đường tròn nội tiếp tam giác ABC \(\Rightarrow\) AI là tia phân giác của \(\widehat{BAC}\) (hay chính là \(\widehat{HAK}\)). Mà theo câu a), tam giác AHK cân tại A nên AI đồng thời là đường cao của tam giác AHK \(\Rightarrow AI\perp HK\) hay \(AI\perp DE\) (đpcm)

 c) Ta có \(\widehat{CIE}=\dfrac{sđ\stackrel\frown{CE}+sđ\stackrel\frown{BD}}{2}\)

\(=\dfrac{sđ\stackrel\frown{CE}+sđ\stackrel\frown{AD}}{2}\) \(=\widehat{CKE}\)  nên tứ giác CEKI nội tiếp 

 \(\Rightarrow\widehat{HKI}=\widehat{DCE}\) \(=\dfrac{sđ\stackrel\frown{DE}}{2}\) 

\(=\dfrac{sđ\stackrel\frown{DA}+sđ\stackrel\frown{AE}}{2}\)  \(=\dfrac{sđ\stackrel\frown{BD}+sđ\stackrel\frown{AE}}{2}\)  \(=\widehat{AHK}\)

Từ đó dễ dàng suy ra KI//AH hay KI//AB (đpcm)

 

2 tháng 5 2020

xin chỉnh đề câu B/ chứng minh AI vuông góc DE, CEKI là tg nội tiếp

2 tháng 5 2020

1) góc AKH = 1/2(sđAD + sđEC)
góc AHK = 1/2(sđAE + sđBD)
mà D là điểm chính giữa cung AB

=> cung AD = cung DB
tương tự cung AE = cung EC
từ đó => góc AHK= góc AKH
=> tam giác AKH cân tại A

25 tháng 3 2020

a) D,E lần lượt là điểm chính giữa của cung nhỏ AB, AC

=> \(\hept{\begin{cases}\widebat{AO}=\widebat{BO}\\\widebat{AE}=\widebat{EC}\end{cases}}\)

ta có

\(\widehat{AHK}=\frac{1}{2}\left(\widebat{BO+\widebat{AE}}\right)\)

\(=\frac{1}{2}\left(\widebat{AO}+\widebat{EC}\right)=\widehat{AKH}\)

=> tam giác AHK cân tại A

b) \(\widebat{AD}=\widebat{DB}=>\widehat{AED}=\widehat{BED}\)

   \(\widebat{AE=\widebat{EC=>\widehat{ADE}=\widehat{IDE}}}\)

DE cạnh chung

=>\(\Delta ADE=\Delta IDE\left(c-g-c\right)\)

=>\(\hept{\begin{cases}DA=DI\\EA=EI\end{cases}=>DE}\)là đường trung trực của AI

=>\(AI\perp DE\)

c)\(\widehat{EIC}=\frac{1}{2}\left(\widebat{BD}+\widebat{CE}\right)=\frac{1}{2}\left(\widebat{AD}+\widebat{EC}\right)=\widehat{EKC}\)

=> tứ giác EKIC nội tiếp

d) tứ giác EKIC nội tiếp

=>\(\widehat{IKC}=\widehat{BEC}=\widehat{BAC}\)

=>\(IK//AB\)

Bài 2: 

Kẻ OH⊥AB tại H và OK⊥CD tại K

Ta có: OH⊥AB(gt)

AB//CD(gt)

Do đó: OH⊥CD(Định lí 2 từ vuông góc tới song song)

mà OK⊥CD(gt)

và OH và OK có điểm chung là O

nên O,H,K thẳng hàng

Xét ΔOAB có OA=OB(=R)

nên ΔOAB cân tại O(Định nghĩa tam giác cân)

Ta có: ΔOAB cân tại O(cmt)

mà OH là đường cao ứng với cạnh đáy AB(gt)

nên OH là đường phân giác ứng với cạnh AB(Định lí tam giác cân)

Suy ra: \(\widehat{AOH}=\widehat{BOH}\)

hay \(\widehat{AOK}=\widehat{BOK}\)

Xét ΔOCD có OC=OD(=R)

nên ΔOCD cân tại O(Định nghĩa tam giác cân)

Ta có: ΔOCD cân tại O(cmt)

mà OK là đường cao ứng với cạnh đáy CD(Gt)

nên OK là đường phân giác ứng với cạnh CD(Định lí tam giác cân)

hay \(\widehat{COK}=\widehat{DOK}\)

Ta có: \(\widehat{AOK}=\widehat{BOK}\)(cmt)

\(\widehat{COK}=\widehat{DOK}\)(cmt)

Do đó: \(\widehat{AOK}-\widehat{COK}=\widehat{BOK}-\widehat{DOK}\)

\(\Leftrightarrow\widehat{AOC}=\widehat{BOD}\)

\(\Leftrightarrow sđ\stackrel\frown{AC}=sđ\stackrel\frown{BD}\)

hay \(\stackrel\frown{AC}=\stackrel\frown{BD}\)(đpcm)

a) Xét (O) có

\(\widehat{BCD}\) là góc nội tiếp chắn \(\stackrel\frown{BD}\)

\(\widehat{ACD}\) là góc nội tiếp chắn \(\stackrel\frown{AD}\)

\(\stackrel\frown{BD}=\stackrel\frown{AD}\)(D là điểm nằm chính giữa của cung AB)

Do đó: \(\widehat{BCD}=\widehat{ACD}\)(Hệ quả góc nội tiếp)

mà tia CD nằm giữa hai tia CA và CB

nên CD là tia phân giác của \(\widehat{BCA}\)(đpcm)