cho tam giác abc nhọn. chứng minh rằng:
sinA+sinB+sinC<2(cosA+cosB+cosC)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL:
sinA+sinB+sinC=1-cosA+cosB+cosC => Tam giác ABC Vuông tại A
Vế trái = sinA + sinB + sinC
= 2sin(A + B)/2.cos(A - B)/2 + 2sinC/2.cosC/2
= 2cosC/2.cos(A - B)/2 + 2sinC/2.cosC/2
= 2cosC/2[cos(A - B)/2 + sinC/2]
=2.cosC/2.[cos(A - B)/2 + cos(A + B)/2]
= 4.cosC/2.cosB/2.cosA/2
Vế phải = 1 - cosA + cosB + cosC
= 2sin²A/2 + 2cos(B + C)/2.cos(B - C)/2
= 2.sinA/2[sinA/2 + cos(B - C)/2] (vì cos(B + C)/2 = sinA/2)
= 2.sinA/2[cos(B + C)/2 + cos(B - C)/2
= 4.sinA/2.cosB/2.cosC/2
Vậy sinA + sinB + sinC = 1 - cosA + cosB + cosC
<=> cosA/2.cosB/2.cosC/2 = sinA/2.cosB/2.cosC/2
<=> cosB/2.cosC/2(sinA/2 - cosA/2) = 0
mà cosB/2 ≠ 0 và cosC/2 ≠ 0
=> sinA/2 = cosA/2
<=> A/2 = 45o
<=> A = 90o
tam giác ABC vuông tại A
1.
\(sinA+sinB-sinC=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-sin\left(A+B\right)\)
\(=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-2sin\dfrac{A+B}{2}.cos\dfrac{A+B}{2}\)
\(=2sin\dfrac{A+B}{2}.\left(cos\dfrac{A-B}{2}-cos\dfrac{A+B}{2}\right)\)
\(=2sin\dfrac{A+B}{2}.2sin\dfrac{A}{2}.sin\dfrac{B}{2}\)
\(=4sin\dfrac{A}{2}.sin\dfrac{B}{2}.cos\dfrac{C}{2}\)
Sao t lại đc như này v, ai check hộ phát
Theo định lí sin:
\(sinB=\dfrac{b}{2R};sinC=\dfrac{c}{2R};sinA=\dfrac{a}{2R}\)
Theo định lí cosin:
\(cosB=\dfrac{a^2+c^2-b^2}{2ac};cosC=\dfrac{a^2+b^2-c^2}{2ab};cosA=\dfrac{b^2+c^2-a^2}{2bc}\)
Theo giả thiết ta có:
\(\left\{{}\begin{matrix}sinB+sinC=2sinA\\cosB+cosC=2cosA\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b}{2R}+\dfrac{c}{2R}=2.\dfrac{a}{2R}\\\dfrac{a^2+c^2-b^2}{2ac}+\dfrac{a^2+b^2-c^2}{2ab}=2.\dfrac{b^2+c^2-a^2}{2bc}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\\dfrac{a^2b+bc^2-b^3}{2abc}+\dfrac{a^2c+b^2c-c^3}{2abc}=\dfrac{b^2+c^2-a^2}{bc}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\\dfrac{\left(b+c\right)\left(a^2+bc-b^2-c^2+bc\right)}{2a}=b^2+c^2-a^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\\dfrac{2a\left(a^2-b^2-c^2+2bc\right)}{2a}=b^2+c^2-a^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\a^2-b^2-c^2+2bc=b^2+c^2-a^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\a^2-b^2-c^2+bc=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\\left(\dfrac{b+c}{2}\right)^2-b^2-c^2+bc=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\3b^2+3c^2-6bc=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\3\left(b-c\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\b=c\end{matrix}\right.\)
\(\Rightarrow a=b=c\)
\(\Rightarrow\Delta ABC\) đều
Xét tam giác ABC nhọn có \(BC^2=AB^2+AC^2-2AB\cdot AC\cdot\cos\widehat{A}\)
\(\Rightarrow\cos\widehat{A}=\dfrac{AB^2+AC^2-BC^2}{2AB\cdot AC}=\dfrac{AB^2+AC^2-BC^2}{4\cdot\dfrac{1}{2}AB\cdot AC}=\dfrac{AB^2+AC^2-BC^2}{4S_{ABC}}\)
Cmtt: \(\left\{{}\begin{matrix}\cos\widehat{B}=\dfrac{AB^2+BC^2-AC^2}{4S_{ABC}}\\\cos\widehat{C}=\dfrac{AC^2+BC^2-AB^2}{4S_{ABC}}\end{matrix}\right.\)
\(\Rightarrow\cos\widehat{A}+\cos\widehat{B}+\cos\widehat{C}\\
=\dfrac{AB^2+AC^2-BC^2+AB^2+BC^2-AC^2+AC^2+BC^2-AB^2}{4S_{ABC}}\\
=\dfrac{AB^2+AC^2+BC62}{4S_{ABC}}\)
Không mất tính tổng quát giả sử: \(A\ge B\ge C\)
=> \(tanA\ge tanB\ge tanC;cosA\le cosB\le cosC\)
Áp dụng BĐT Chebyshev ta có:
\(\left(\dfrac{tanA+tanB+tanC}{3}\right)\left(\dfrac{cosA+cosB+cosC}{3}\right)\ge\dfrac{tanA\cdot cosA+tanB\cdot cosB+tanC\cdot cosC}{3}\)
=> \(\dfrac{sinA+sinB+sinC}{cosA+cosB+cosC}\le\dfrac{tanA+tanB+tanC}{3}\)
mặt khác ta có: \(tanA+tanB+tanC=tanA\cdot tanB\cdot tanC\)
=> \(\dfrac{sinA+sinB+sinC}{cosA+cosB+cosC}\le\dfrac{tanA\cdot tanB\cdot tanC}{3}\left(đpcm\right)\)
đẳng thức xảy ra khi tam giác ABC đều
Đề sai.
\(tan90^o=\dfrac{1}{0}\) (không thể chia cho không) nên đề bài sai với trường hợp tam giác vuông rồi.
AB/sinC = BC/sinA = CA/sinB cái này là định lý hàm số sin nè: chứng minh một cạnh của tam giác bằng đường kính nhân sin góc đối là ra
cosA + cosB + cosC > (sinA + sinB + sinC)/2: kẻ 3 đg` cao AD BE CF cắt nhau tại H
=> cosB=cosAHF=HF/AH, cosC=cosAHE=HE/AH
EF=AH.sinA => sinA = EF/AH
EF<HF + HE(bđt tam giác)
=> sinA < cosB + cosC
chứng minh tương tự => đpcm