1.so sánh x/x+1 và x+1/x+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
link nè : https://olm.vn/hoi-dap/detail/218521237432.html
\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\)
\(=\left[\left(x-1\right)\left(x-4\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]\)
\(=\left(x^2-5x+4\right)\left(x^2-5x+6\right)\)(*)
Đặt \(x^2-5x+4=a\)
(*)\(\Leftrightarrow a\left(a+2\right)\)
\(=a^2+2a\)
\(=a^2+2a+1-1\)
\(=\left(a+1\right)^2-1\ge-1\forall a\)
Dấu "=" xảy ra \(\Leftrightarrow a=-1\Leftrightarrow x^2-5x+4=-1\)
\(\Leftrightarrow x^2-5x+5=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\frac{5}{2}+\frac{25}{4}-\frac{5}{4}=0\)
\(\Leftrightarrow\left(x-\frac{5}{2}\right)^2=\left(\frac{\pm\sqrt{5}}{2}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{5}+5}{2}\\x=\frac{-\sqrt{5}+5}{2}\end{cases}}\)
\(B=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)...\left(1-\frac{1}{81}\right)\left(1-\frac{1}{100}\right)\)
\(B=\frac{3}{4}\cdot\frac{8}{9}\cdot...\cdot\frac{80}{81}\cdot\frac{99}{100}\)
\(B=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot...\cdot\frac{8.10}{9.9}\cdot\frac{9.11}{10.10}\)
\(B=\frac{\left(1\cdot2\cdot...\cdot8\cdot9\right).\left(3\cdot4\cdot...\cdot10\cdot11\right)}{\left(2\cdot3\cdot..\cdot9\cdot10\right).\left(2\cdot3\cdot...\cdot9\cdot10\right)}\)
\(B=\frac{1\cdot2\cdot...\cdot8\cdot9}{2\cdot3\cdot...\cdot9\cdot10}\cdot\frac{3\cdot4\cdot...\cdot10\cdot11}{2\cdot3\cdot...\cdot9\cdot10}\)
\(B=\frac{1}{10}\cdot\frac{11}{2}=\frac{11}{20}\)
Vì 20 < 21 nên 11/20 > 11/21
Vậy .....
bạn vào link này nè:https://olm.vn/hoi-dap/question/980572.html
\(\frac{1}{x+1}\)và \(\frac{x+2}{2x+1}\)
Ta có :
\(\frac{1}{x+1}=\frac{1.2x+1}{x+1.2x+1}=\frac{2x+1}{3x+1}\)
\(\frac{x+2}{2x+1}=\frac{x+2.x+1}{2x+1.x+1}=\frac{3x+1}{3x+1}\)
Vì \(\frac{2x+1}{3x+1}< \frac{3x+1}{3x+1}\)
=> \(\frac{1}{x+1}< \frac{x+2}{2x+1}\)
Vậy :...
\(P=\dfrac{1+\sqrt{x}}{2\sqrt{x}}=\dfrac{\sqrt{x}}{2\sqrt{x}}+\dfrac{1}{2\sqrt{x}}=\dfrac{1}{2}+\dfrac{1}{2\sqrt{x}}\)
Do \(\dfrac{1}{2\sqrt{x}}>0\)
\(\Rightarrow P=\dfrac{1}{2}+\dfrac{1}{2\sqrt{x}}>\dfrac{1}{2}\)
(x-1)2020=(x-1)2022
=>(x-1)2020-(x-1)2022=0
=>(x-1)2020-(x-1)2020.(x-1)2=0
=>(x-1)2020(1-(x-1)2=0
=>(x-1)2020=0 hoặc 1-(x-1)2=0
=>x=1 hoặc x=2.
Bài 2
a,2105 và 545
2105=(27)15=12815
545=(53)15=12515
Vì 12815>12515 nên 2105>545.
b,
554 và 381
554=(56)9=156259
381=(39)9=196839
Vì 156259<196839 nên 554<381
Bài 1 :
\(\left(x-1\right)^{2020}=\left(x-1\right)^{2022}\)
\(\Rightarrow\left(x-1\right)^{2022}-\left(x-1\right)^{2020}=0\)
\(\Rightarrow\left(x-1\right)^{2020}\left[\left(x-1\right)^2-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^2-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\\left(x-1\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-1=1\\x-1=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{2014^2}-1\right)\)
\(-A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{2014^2}\right)\)
\(-A=\frac{3}{2\cdot2}\cdot\frac{8}{3\cdot3}\cdot\frac{15}{4\cdot4}\cdot...\cdot\frac{4056195}{2014\cdot2014}\)
\(-A=\frac{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(2013\cdot2015\right)}{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(2014\cdot2014\right)}\)
\(-A=\frac{\left(1\cdot2\cdot3\cdot...\cdot2013\right)\left(3\cdot4\cdot5\cdot...\cdot2015\right)}{\left(2\cdot3\cdot4\cdot...\cdot2014\right)\left(2\cdot3\cdot4\cdot...\cdot2014\right)}\)
\(-A=\frac{1\cdot2015}{2014\cdot2}=\frac{2015}{4028}\)
\(A=\frac{-2015}{4028}\)
a) Có \(x+1< x+2\)
\(\Rightarrow\sqrt{x+1}< \sqrt{x+2}\)
\(\Leftrightarrow\frac{\sqrt{x+1}}{\sqrt{x+2}}< 1\)
b) Vì \(\sqrt{x+1}< \sqrt{x+2}\)
\(\Rightarrow\sqrt{x+1}.\sqrt{x+1}.\sqrt{x+2}< \sqrt{x+2}.\sqrt{x+1}.\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{x+1}^2.\sqrt{x+2}< \sqrt{x+2}^2.\sqrt{x+1}\)
\(\Rightarrow\frac{\sqrt{x+1}^2}{\sqrt{x+2}^2}< \frac{\sqrt{x+1}}{\sqrt{x+2}}\)
hay \(\frac{\sqrt{x+1}}{\sqrt{x+2}}>\frac{\sqrt{x+1}^2}{\sqrt{x+2}^2}\)
a: Ta có: \(M=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{x-\sqrt{x}}\)
\(=\dfrac{x-2\sqrt{x}+1}{x-\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
b:Để M=2 thì \(\sqrt{x}-1=2\sqrt{x}\)
\(\Leftrightarrow\sqrt{x}=-1\left(loại\right)\)
\(\dfrac{x}{x+1}=\dfrac{x+1-1}{x+1}=1-\dfrac{1}{x+1}\)
\(\dfrac{x+1}{x+2}=\dfrac{x+2-1}{x+2}=1-\dfrac{1}{x+2}\)
x+1<x+2
=>1/x+1>1/x+2
=>-1/x+1<-1/x+2
=>x/x+1<x+1/x+2
x x + 1 = x + 1 − 1 x + 1 = 1 − 1 x + 1 x + 1 x + 2 = x + 2 − 1 x + 2 = 1 − 1 x + 2 x+11/x+1>1/x+2 =>-1/x+1<-1/x+2 =>x/x+1