Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)...\left(1-\frac{1}{81}\right)\left(1-\frac{1}{100}\right)\)
\(B=\frac{3}{4}\cdot\frac{8}{9}\cdot...\cdot\frac{80}{81}\cdot\frac{99}{100}\)
\(B=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot...\cdot\frac{8.10}{9.9}\cdot\frac{9.11}{10.10}\)
\(B=\frac{\left(1\cdot2\cdot...\cdot8\cdot9\right).\left(3\cdot4\cdot...\cdot10\cdot11\right)}{\left(2\cdot3\cdot..\cdot9\cdot10\right).\left(2\cdot3\cdot...\cdot9\cdot10\right)}\)
\(B=\frac{1\cdot2\cdot...\cdot8\cdot9}{2\cdot3\cdot...\cdot9\cdot10}\cdot\frac{3\cdot4\cdot...\cdot10\cdot11}{2\cdot3\cdot...\cdot9\cdot10}\)
\(B=\frac{1}{10}\cdot\frac{11}{2}=\frac{11}{20}\)
Vì 20 < 21 nên 11/20 > 11/21
Vậy .....
bạn vào link này nè:https://olm.vn/hoi-dap/question/980572.html
\(\frac{1}{x+1}\)và \(\frac{x+2}{2x+1}\)
Ta có :
\(\frac{1}{x+1}=\frac{1.2x+1}{x+1.2x+1}=\frac{2x+1}{3x+1}\)
\(\frac{x+2}{2x+1}=\frac{x+2.x+1}{2x+1.x+1}=\frac{3x+1}{3x+1}\)
Vì \(\frac{2x+1}{3x+1}< \frac{3x+1}{3x+1}\)
=> \(\frac{1}{x+1}< \frac{x+2}{2x+1}\)
Vậy :...
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{2014^2}-1\right)\)
\(-A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{2014^2}\right)\)
\(-A=\frac{3}{2\cdot2}\cdot\frac{8}{3\cdot3}\cdot\frac{15}{4\cdot4}\cdot...\cdot\frac{4056195}{2014\cdot2014}\)
\(-A=\frac{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(2013\cdot2015\right)}{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(2014\cdot2014\right)}\)
\(-A=\frac{\left(1\cdot2\cdot3\cdot...\cdot2013\right)\left(3\cdot4\cdot5\cdot...\cdot2015\right)}{\left(2\cdot3\cdot4\cdot...\cdot2014\right)\left(2\cdot3\cdot4\cdot...\cdot2014\right)}\)
\(-A=\frac{1\cdot2015}{2014\cdot2}=\frac{2015}{4028}\)
\(A=\frac{-2015}{4028}\)
1)a<b
2) ko có giá trị nào thỏa mãn yêu cầu đề bài
\(\dfrac{x}{x+1}=\dfrac{x+1-1}{x+1}=1-\dfrac{1}{x+1}\)
\(\dfrac{x+1}{x+2}=\dfrac{x+2-1}{x+2}=1-\dfrac{1}{x+2}\)
x+1<x+2
=>1/x+1>1/x+2
=>-1/x+1<-1/x+2
=>x/x+1<x+1/x+2
x x + 1 = x + 1 − 1 x + 1 = 1 − 1 x + 1 x + 1 x + 2 = x + 2 − 1 x + 2 = 1 − 1 x + 2 x+11/x+1>1/x+2 =>-1/x+1<-1/x+2 =>x/x+1