Cho \(\frac{x}{x^2+x+1}\) =\(\frac{1}{4}\)
Tính A=\(\frac{x^5-3x^3-10x+12}{x^4+7x^2+15}\)(Đã tính ra bằng \(\frac{-1}{2}\)?)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x}{x^2+x+1}=\frac{1}{4}\Leftrightarrow4x=x^2+x+1\Leftrightarrow x^2-3x+1=0\)
\(A=\frac{\left(x^5-3x^4+x^3\right)+\left(3x^4-9x^3+3x^2\right)+\left(5x^3-15x^2+5x\right)+\left(12x^2-36x+12\right)+21x}{\left(x^4-3x^3+x^2\right)+\left(3x^3-9x^2+3x\right)+\left(15x^2-45x+15\right)+42x}\)
\(A=\frac{21x}{42x}=\frac{1}{2}\)
\(\dfrac{x}{x^2+x+1}=\dfrac{1}{4}\Leftrightarrow4x=x^2+x+1\) (1)
Thay \(x=1\) vào thấy không đúng \(\Rightarrow x-1\ne0\) , nhân 2 vế của (1) với \(x-1:\)
\(4x\left(x-1\right)=\left(x-1\right)\left(x^2+x+1\right)\)
\(\Leftrightarrow4x^2-4x=x^3-1\Rightarrow x^3=4x^2-4x+1\)
Mặt khác từ (1) ta cũng có \(x^2=3x-1\) (2)
\(\Rightarrow x^3=4\left(3x-1\right)-4x+1=8x-3\) (đpcm)
\(\Rightarrow x^3-8x+3=0\)
\(A=\dfrac{x^5-8x^3+3x^2+5x^3-40x+15-3x^2+30x-3}{x^4-8x^2+3x+15x^2-3x+15}\)
\(A=\dfrac{x^2\left(x^3-8x+3\right)+5\left(x^3-8x+3\right)-3x^2+30x-3}{x\left(x^3-8x+3\right)+15x^2-3x+15}\)
\(A=\dfrac{-3x^2+30x-3}{15x^2-3x+15}=\dfrac{-3\left(3x-1\right)+30x-3}{15\left(3x-1\right)-3x+15}\)
\(A=\dfrac{21x}{42x}=\dfrac{1}{2}\)
1. \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
\(\Leftrightarrow5\left(7x-1\right)+60x=6\left(16-x\right)\)
\(\Leftrightarrow35x-5+60x=96-6x\)
\(\Leftrightarrow95x-5=96-6x\)
\(\Leftrightarrow95x+6x=96+5\)
\(\Leftrightarrow101x=101\)
\(\Leftrightarrow x=1\)
2. \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)
\(\Leftrightarrow3\left(10x+3\right)=36+4\left(6+8x\right)\)
\(\Leftrightarrow30x+9=36+24+32x\)
\(\Leftrightarrow30x+9=32x+60\)
\(\Leftrightarrow30x-32x=60-9\)
\(\Leftrightarrow-2x=51\)
\(\Leftrightarrow x=-\frac{51}{2}\)
3. \(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)
\(\Leftrightarrow8x-3-2\left(3x-2\right)=2\left(2x-1\right)+x+3\)
\(\Leftrightarrow8x-3-6x+4=4x-2+x+3\)
\(\Leftrightarrow2x+1=5x+1\)
\(\Leftrightarrow2x=5x\)
\(\Leftrightarrow x=0\)
4) \(\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}=\frac{1-x}{2}-2\)
=> \(\frac{9-3x}{8}+\frac{10-2x}{3}=\frac{1-x}{2}-\frac{2}{1}\)
=> \(\frac{3\left(9-3x\right)}{24}+\frac{8\left(10-2x\right)}{24}=\frac{12\left(1-x\right)}{24}-\frac{48}{24}\)
=> \(\frac{27-9x}{24}+\frac{80-16x}{24}=\frac{12-12x}{24}-\frac{48}{24}\)
=> \(\frac{27-9x+80-16x}{24}=\frac{12-12x-48}{24}\)
=> 27 - 9x + 80 - 16x = 12 - 12x - 48
=> 27 - 9x + 80 - 16x - 12 + 12x + 48 = 0
=> (27 + 80 - 12 + 48) + (-9x - 16x + 12x) = 0
=> 143 - 13x = 0
=> 13x = 143
=> x = 11
5) \(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)
=> \(\frac{2x-6}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)
=> \(\frac{3\left(2x-6\right)}{21}+\frac{7\left(x-5\right)}{21}-\frac{13x+4}{21}=0\)
=> \(\frac{6x-18}{21}+\frac{7x-35}{21}-\frac{13x+4}{21}=0\)
=> \(\frac{6x-18+7x-35-13x-4}{21}=0\)
=> 6x - 18 + 7x - 35 - 13x - 4 = 0
=> (6x + 7x - 13x) + (-18 - 35 - 4) = 0
=> -57 = 0(vô nghiệm)
6) \(\frac{6x+5}{2}-\left(2x+\frac{2x+1}{2}\right)=\frac{10x+3}{4}\)
=> \(\frac{6x+5}{2}-\frac{10x+3}{4}=2x+\frac{2x+1}{2}\)
=> \(\frac{2\left(6x+5\right)}{4}-\frac{10x+3}{4}=\frac{8x}{4}+\frac{2\left(2x+1\right)}{4}\)
=> \(\frac{12x+10}{4}-\frac{10x+3}{4}=\frac{8x}{4}+\frac{4x+2}{4}\)
=> \(\frac{12x+10-\left(10x+3\right)}{4}=\frac{8x+4x+2}{4}\)
=> \(\frac{12x+10-10x-3}{4}=\frac{12x+2}{4}\)
=> \(12x+10-10x-3=12x+2\)
=> \(2x+10-3=12x+2\)
=> 2x + 10 - 3 - 12x - 2 = 0
=> (2x - 12x) + (10 - 3 - 2) = 0
=> -10x + 5 = 0
=> -10x = -5
=> x = 1/2
7) \(\frac{2x-1}{5}-\frac{x-2}{3}-\frac{x+7}{15}=0\)
=> \(\frac{3\left(2x-1\right)}{15}-\frac{5\left(x-2\right)}{15}-\frac{x+7}{15}=0\)
=> \(\frac{6x-3}{15}-\frac{5x-10}{15}-\frac{x+7}{15}=0\)
=> \(\frac{6x-3-\left(5x-10\right)-\left(x+7\right)}{15}=0\)
=> 6x - 3 - 5x + 10 - x - 7 = 0
=> (6x - 5x - x) + (-3 + 10 - 7) = 0
=> 0x + 0 = 0
=> 0x = 0
=> x tùy ý
Bài 8 tự làm nhé