K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 12 2022

$ABCD$ là hình chữ nhật thì $AC=BD$ chứ bạn sao độ dài lại khác nhau được? Bạn xem lại đề.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta có: \(AC = BD = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2 \)

+) \(AB \bot AD \Rightarrow \overrightarrow {AB}  \bot \overrightarrow {AD}  \Rightarrow \overrightarrow {AB} .\overrightarrow {AD}  = 0\)

+) \(\overrightarrow {AB} .\overrightarrow {AC}  = \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = a.a\sqrt 2.\cos 45^\circ  = a^2\)

+) \(\overrightarrow {AC} .\overrightarrow {CB}  = \left| {\overrightarrow {AC} } \right|.\left| {\overrightarrow {CB} } \right|.\cos \left( {\overrightarrow {AC} ,\overrightarrow {CB} } \right) = a\sqrt 2 .a.\cos 135^\circ  =  - {a^2}\)

+) \(AC \bot BD \Rightarrow \overrightarrow {AC}  \bot \overrightarrow {BD}  \Rightarrow \overrightarrow {AC} .\overrightarrow {BD}  = 0\)

Chú ý

\(\overrightarrow {a}  \bot \overrightarrow {b}  \Leftrightarrow \overrightarrow {a} .\overrightarrow {b}  = 0\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) \(\overrightarrow {BD}  = \overrightarrow {AD}  - \overrightarrow {AB} ;\;\overrightarrow {AC}  = \overrightarrow {AB}  + \overrightarrow {AD} .\)

b) \(\overrightarrow {AB} .\overrightarrow {AD}  = 4.6.\cos \widehat {BAD} = 24.\cos {60^o} = 12.\)

\(\begin{array}{l}\overrightarrow {AB} .\overrightarrow {AC}  = \overrightarrow {AB} (\overrightarrow {AB}  + \overrightarrow {AD} ) = {\overrightarrow {AB} ^2} + \overrightarrow {AB} .\overrightarrow {AD}  = {4^2} + 12 = 28.\\\overrightarrow {BD} .\overrightarrow {AC}  = (\overrightarrow {AD}  - \overrightarrow {AB} )(\overrightarrow {AB}  + \overrightarrow {AD} ) = {\overrightarrow {AD} ^2} - {\overrightarrow {AB} ^2} = {6^2} - {4^2} = 20.\end{array}\)

c) Áp dụng định lí cosin cho tam giác ABD ta có:

\(\begin{array}{l}\quad \;B{D^2} = A{B^2} + A{D^2} - 2.AB.AD.\cos A\\ \Leftrightarrow B{D^2} = {4^2} + {6^2} - 2.4.6.\cos {60^o} = 28\\ \Leftrightarrow BD = 2\sqrt 7 .\end{array}\)

Áp dụng định lí cosin cho tam giác ABC ta có:

\(\begin{array}{l}\quad \;A{C^2} = A{B^2} + B{C^2} - 2.AB.BC.\cos B\\ \Leftrightarrow A{C^2} = {4^2} + {6^2} - 2.4.6.\cos {120^o} = 76\\ \Leftrightarrow AC = 2\sqrt {19} .\end{array}\)

NV
8 tháng 12 2021

1.

\(\overrightarrow{AB}.\overrightarrow{BC}=\overrightarrow{AB}.\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=\overrightarrow{AB}.\left(-\overrightarrow{AB}\right)+\overrightarrow{AB}.\overrightarrow{AC}=-AB^2=-25\)

2.

\(\overrightarrow{AB}.\overrightarrow{BD}=\overrightarrow{AB}\left(\overrightarrow{BA}+\overrightarrow{AD}\right)=-\overrightarrow{AB}.\overrightarrow{AB}+\overrightarrow{AB}.\overrightarrow{AD}=-AB^2+0=-64\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Ta có: \(AC = \sqrt {A{B^2} + A{D^2}}  = \sqrt {2{a^2}}  = a\sqrt 2 \)

\( \Rightarrow \overrightarrow {AB} .\overrightarrow {AC}  = a.a\sqrt 2 .\cos \widehat {BAC} = {a^2}\sqrt 2 \cos {45^o} = {a^2}.\)

b) Dễ thấy: \(AC \bot BD \Rightarrow (\overrightarrow {AC} ,\overrightarrow {BD} ) = {90^o}\)

\( \Rightarrow \overrightarrow {AC} .\overrightarrow {BD}  = AC.BD.\cos {90^o} = AC.BD.0 = 0.\)

20 tháng 12 2022

a: AB=BC=CD=DA=6a

\(AC=BD=\sqrt{\left(6a\right)^2+\left(6a\right)^2}=6a\sqrt{2}\)

\(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|=\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=CB=6a\)

\(\left|\overrightarrow{BC}+\overrightarrow{BD}\right|=\sqrt{BC^2+BD^2+2\cdot BC\cdot BD\cdot cos45}\)

\(=\sqrt{36a^2+72a^2+\sqrt{2}\cdot6a\cdot6a\sqrt{2}}\)

\(=6a\sqrt{5}\)

b: \(\overrightarrow{AB}\cdot\overrightarrow{AC}=AB\cdot AC\cdot cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)=6a\cdot6a\sqrt{2}\cdot\dfrac{\sqrt{2}}{2}\)

\(=36a^2\)

NV
17 tháng 12 2020

Do ABCD là hình vuông nên AC vuông góc BD

Do đó:

\(P=\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\left(\overrightarrow{BC}+\overrightarrow{BA}+\overrightarrow{BD}\right)=\left(\overrightarrow{AB}+\overrightarrow{AC}\right).2\overrightarrow{BD}\)

\(=2\overrightarrow{AB}.\overrightarrow{BD}+2\overrightarrow{AC}.\overrightarrow{BD}=2\overrightarrow{AB}.\overrightarrow{BC}=2a.a.cos135^0=-a^2\sqrt{2}\)

 

18 tháng 5 2017

A B C D B' O
\(cos\left(\overrightarrow{AC};\overrightarrow{BA}\right)=cos\left(\overrightarrow{AC};\overrightarrow{AB'}\right)=cos\widehat{CAB'}=cos135^o\)\(=\dfrac{\sqrt{2}}{2}\).
\(sin\left(\overrightarrow{AC};\overrightarrow{BD}\right)=sin90^o=1\) do \(AC\perp BD\).
\(cos\left(\overrightarrow{AB};\overrightarrow{CD}\right)=cos180^o=-1\) do hai véc tơ \(\overrightarrow{AB};\overrightarrow{CD}\) ngược hướng.

 

18 tháng 5 2017

Giải bài 6 trang 40 sgk Hình học 10 | Để học tốt Toán 10

Giải bài 6 trang 40 sgk Hình học 10 | Để học tốt Toán 10