K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2020

A B C D E

Trên nửa mặt phẳng bờ BC dựng \(\Delta\)BCE đều

Xét \(\Delta\)BAE và \(\Delta\) CAE có:

AB = AC (\(\Delta\)ABC cân)

AE: chung

EB = EC (\(\Delta\)BCE đều)

\(\Rightarrow\)\(\Delta\)BAE = \(\Delta\) CAE (c.c.c)

\(\Rightarrow\)BAE = CAE (2 cạnh tương ứng)

\(\Rightarrow\)AE là phân giác BAC 

\(\Rightarrow\)BAE = CAE = BAC : 2 = 20o : 2 = 10o

Vì \(\Delta\) ABC cân ở A \(\Rightarrow\)BCA = (180o - BAC) : 2 = 80o

Ta có: \(\Delta\)BCE đều \(\Rightarrow\)ECB = 60o

Có: ACE + ECB = ACB

\(\Rightarrow\)ACE = ACB - ECB = 80o - 60o = 20o

\(\Rightarrow\)ACE = CAD

Xét \(\Delta\)DAC và \(\Delta\)ECA có:

AC: chung

ACE = CAD (cmt)

EC = AD (= BC)

\(\Rightarrow\)\(\Delta\)DAC = \(\Delta\)ECA (c.g.c)

\(\Rightarrow\)EAC = ECA = 10o (2 góc tương ứng)

Ta có: BDC = DAC + ECA = 20o + 10o =30o

Vậy BDC = 30o

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a)  Vì \(ED//AB \Rightarrow \Delta DEC\backsim\Delta ABC\) (định lí)

b) Vì \(ED//AB \Rightarrow \widehat {CDE} = \widehat {CAB}\) (hai góc đồng vị)

Mà \(\widehat {CAB} = \widehat {A'}\). Do đó, \(\widehat {CDE} = \widehat {B'A'C'}\).

Xét tam giác \(A'B'C'\) và tam giác \(DEC\) ta có:

\(\widehat {B'A'C'} = \widehat {CDE}\) (chứng minh trên)

\(A'C' = CD\) (giải thuyết)

\(\widehat {C'} = \widehat C\) (giả thuyết)

Do đó, \(\Delta A'B'C' = \Delta DEC\) (g.c.g)

c) Vì tam giác \(\Delta A'B'C'\backsim\Delta DEC\) (tính chất)

Mà \(\Delta DEC\backsim\Delta ABC\) nên \(\Delta ABC\backsim\Delta A'B'C'\).

4 tháng 1 2020

E D A C B F I

a) Xét \(\Delta\)BAE và \(\Delta\)DAC có: ^BAE = ^DAC ( đối đỉnh ) ; AD = AB ( gt ) ; AE = AC ( gt )

=> \(\Delta\)BAE = \(\Delta\)DAC ( c.g.c)

=> BE = DC 

b) Tương tự câu a dễ dàng cm đc: \(\Delta\)ADE = \(\Delta\)ABC => ^ADE = ^ABC => DE//BC

=> ^EDI = ^DIC  mà ^EDI = ^BDI  ( DI là phân giác ^BDE ) 

=> ^DIC = ^BDI hay ^DIB = ^IDB => \(\Delta\)BDI cân tại B.

c) Ta có: ^DBC là góc ngoài tại đỉnh B của \(\Delta\)BDI => ^DBC = ^BDI + ^BID  = 2. ^BID  = 2. ^CIF( theo b) (1)

Có: CF là phân giác ^BCA =>^BCF = ^ACF => ^BCA = ^BCF + ^ACF = 2. ^BCF = 2. ^ICF  (2)

Lại có: ^CFD  là góc ngoài của \(\Delta\)FCI  => ^CFD = ^CIF + ^ICF  (3)

Từ (1) ; (2) ; (3) => 2 .^CFD = 2 ^CIF + 2. ^ICF = ^DBC + ^BCA = ^DBC + ^CED  (  ^CED = ^BCA  vì ED //BC )

24 tháng 2 2022

098765432rtyuiorewerio65yuy5t

yyyyyyyyyyyyyyyyyyyyyyy

b) Ta có: AD+DC=AC(D nằm giữa A và C)

nên DC=AC-AD=3-1=2(cm)

Ta có: DE=AD(gt)

mà AD=1cm(cmt)

nên DE=1cm

Ta có: \(\dfrac{BD}{CD}=\dfrac{\sqrt{2}}{2}\)

\(\dfrac{DE}{DB}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)

Do đó: \(\dfrac{BD}{CD}=\dfrac{DE}{DB}\)\(\left(=\dfrac{\sqrt{2}}{2}\right)\)

Xét ΔBDE và ΔCDB có 

\(\dfrac{BD}{CD}=\dfrac{DE}{DB}\)(cmt)

\(\widehat{BDE}\) chung

Do đó: ΔBDE\(\sim\)ΔCDB(c-g-c)

a) Ta có: AD+DE+EC=AC

mà AD=DE=EC(gt)

nên \(AD=\dfrac{AC}{3}=\dfrac{3}{3}=1\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:

\(BD^2=AB^2+AD^2\)

\(\Leftrightarrow BD^2=1+1=2\)

hay \(BD=\sqrt{2}cm\)

Vậy: \(BD=\sqrt{2}cm\)

27 tháng 12 2019

A B C E D

A) TRONG \(\Delta ABC\)TA VẼ \(\Delta EBC\)VUÔNG CÂN TẠI E;\(\widehat{EBC}=45^o\)

TA CÓ \(EB^2+EC^2=BC^2\)

\(2EB^2=4;EB^2=2;EB=\sqrt{2}\)

VẬY \(AD=EB=\sqrt{2}\)

\(\Delta BAE=\Delta CAE\left(C-G-C\right)\)

\(\Rightarrow\widehat{BAE}=\widehat{CAE}=15^o\)

\(\widehat{ABC}=\left(180^o-30^o\right):2=75^o;\widehat{ABE}=75^o-45^o=30^o;\)VẬY\(\widehat{ABE}=\widehat{BED}=30^o\)

\(\Delta ABD=\Delta BAE\left(C-G-C\right)\Rightarrow\widehat{ABE}=\widehat{BAE}=15^o\)

B)

\(\Delta DBC\)\(\widehat{DBC}=75^o-15^o=60^o;\widehat{DCB}=75^o\)\(\widehat{BDC}=45^o\)

\(\Rightarrow\widehat{BDC}< \widehat{DBC}< \widehat{DCB}\left(45^o< 60^o< 75^o\right)\)do đó BC<CD<BD( QUAN HỆ BA CẠNH VÀ GÓC ĐỐI DIỆN)

27 tháng 12 2019

ᴾᴿᴼシĐệ❦℘ℛℴ༻꧂

-hình bạn vẽ thiếu dữ kiện nha

Tam giác ABC cân tại A , bạn phải kí hiệu AB=AC chứ

18 tháng 1 2018

sao nhiều v bạn