K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2020

A B C D E

Trên nửa mặt phẳng bờ BC dựng \(\Delta\)BCE đều

Xét \(\Delta\)BAE và \(\Delta\) CAE có:

AB = AC (\(\Delta\)ABC cân)

AE: chung

EB = EC (\(\Delta\)BCE đều)

\(\Rightarrow\)\(\Delta\)BAE = \(\Delta\) CAE (c.c.c)

\(\Rightarrow\)BAE = CAE (2 cạnh tương ứng)

\(\Rightarrow\)AE là phân giác BAC 

\(\Rightarrow\)BAE = CAE = BAC : 2 = 20o : 2 = 10o

Vì \(\Delta\) ABC cân ở A \(\Rightarrow\)BCA = (180o - BAC) : 2 = 80o

Ta có: \(\Delta\)BCE đều \(\Rightarrow\)ECB = 60o

Có: ACE + ECB = ACB

\(\Rightarrow\)ACE = ACB - ECB = 80o - 60o = 20o

\(\Rightarrow\)ACE = CAD

Xét \(\Delta\)DAC và \(\Delta\)ECA có:

AC: chung

ACE = CAD (cmt)

EC = AD (= BC)

\(\Rightarrow\)\(\Delta\)DAC = \(\Delta\)ECA (c.g.c)

\(\Rightarrow\)EAC = ECA = 10o (2 góc tương ứng)

Ta có: BDC = DAC + ECA = 20o + 10o =30o

Vậy BDC = 30o

4 tháng 1 2020

E D A C B F I

a) Xét \(\Delta\)BAE và \(\Delta\)DAC có: ^BAE = ^DAC ( đối đỉnh ) ; AD = AB ( gt ) ; AE = AC ( gt )

=> \(\Delta\)BAE = \(\Delta\)DAC ( c.g.c)

=> BE = DC 

b) Tương tự câu a dễ dàng cm đc: \(\Delta\)ADE = \(\Delta\)ABC => ^ADE = ^ABC => DE//BC

=> ^EDI = ^DIC  mà ^EDI = ^BDI  ( DI là phân giác ^BDE ) 

=> ^DIC = ^BDI hay ^DIB = ^IDB => \(\Delta\)BDI cân tại B.

c) Ta có: ^DBC là góc ngoài tại đỉnh B của \(\Delta\)BDI => ^DBC = ^BDI + ^BID  = 2. ^BID  = 2. ^CIF( theo b) (1)

Có: CF là phân giác ^BCA =>^BCF = ^ACF => ^BCA = ^BCF + ^ACF = 2. ^BCF = 2. ^ICF  (2)

Lại có: ^CFD  là góc ngoài của \(\Delta\)FCI  => ^CFD = ^CIF + ^ICF  (3)

Từ (1) ; (2) ; (3) => 2 .^CFD = 2 ^CIF + 2. ^ICF = ^DBC + ^BCA = ^DBC + ^CED  (  ^CED = ^BCA  vì ED //BC )

24 tháng 2 2022

098765432rtyuiorewerio65yuy5t

yyyyyyyyyyyyyyyyyyyyyyy

27 tháng 12 2019

A B C E D

A) TRONG \(\Delta ABC\)TA VẼ \(\Delta EBC\)VUÔNG CÂN TẠI E;\(\widehat{EBC}=45^o\)

TA CÓ \(EB^2+EC^2=BC^2\)

\(2EB^2=4;EB^2=2;EB=\sqrt{2}\)

VẬY \(AD=EB=\sqrt{2}\)

\(\Delta BAE=\Delta CAE\left(C-G-C\right)\)

\(\Rightarrow\widehat{BAE}=\widehat{CAE}=15^o\)

\(\widehat{ABC}=\left(180^o-30^o\right):2=75^o;\widehat{ABE}=75^o-45^o=30^o;\)VẬY\(\widehat{ABE}=\widehat{BED}=30^o\)

\(\Delta ABD=\Delta BAE\left(C-G-C\right)\Rightarrow\widehat{ABE}=\widehat{BAE}=15^o\)

B)

\(\Delta DBC\)\(\widehat{DBC}=75^o-15^o=60^o;\widehat{DCB}=75^o\)\(\widehat{BDC}=45^o\)

\(\Rightarrow\widehat{BDC}< \widehat{DBC}< \widehat{DCB}\left(45^o< 60^o< 75^o\right)\)do đó BC<CD<BD( QUAN HỆ BA CẠNH VÀ GÓC ĐỐI DIỆN)

27 tháng 12 2019

ᴾᴿᴼシĐệ❦℘ℛℴ༻꧂

-hình bạn vẽ thiếu dữ kiện nha

Tam giác ABC cân tại A , bạn phải kí hiệu AB=AC chứ

18 tháng 1 2018

sao nhiều v bạn

17 tháng 9 2023

a) Ta có: \(\widehat {BAD} = \widehat {CAD}\)(vì AD là phân giác của góc BAC).

Mà \(\widehat B > \widehat C\)nên \(\widehat B + \widehat {BAD} > \widehat C + \widehat {CAD}\).

Tổng ba góc trong một tam giác bằng 180° nên:

\(\begin{array}{l}\widehat B + \widehat {BAD} > \widehat C + \widehat {CAD}\\ \to 180^\circ  - (\widehat B + \widehat {BAD}) < 180^\circ  - (\widehat C + \widehat {CAD})\\ \to \widehat {ADB} < \widehat {ADC}\end{array}\)

b) Xét hai tam giác ADB và tam giác ADE có:

     \(\widehat {ADB} = \widehat {ADE}\);

     AD chung;

     \(\widehat {BAD} = \widehat {EAD}\).

Vậy \(\Delta ABD = \Delta AED\) (g.c.g)

Trong một tam giác, cạnh đối diện với góc lớn hơn thì lớn hơn.

Trong tam giác ABC có \(\widehat B > \widehat C\) nên AC > AB hay AB < AC (AB là cạnh đối diện với góc C, AC là cạnh đối diện với góc B).