\(\widehat{A}\) = 20o.Trên cạnh AB lấy điểm D s...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2020

A B C D E

Trên nửa mặt phẳng bờ BC dựng \(\Delta\)BCE đều

Xét \(\Delta\)BAE và \(\Delta\) CAE có:

AB = AC (\(\Delta\)ABC cân)

AE: chung

EB = EC (\(\Delta\)BCE đều)

\(\Rightarrow\)\(\Delta\)BAE = \(\Delta\) CAE (c.c.c)

\(\Rightarrow\)BAE = CAE (2 cạnh tương ứng)

\(\Rightarrow\)AE là phân giác BAC 

\(\Rightarrow\)BAE = CAE = BAC : 2 = 20o : 2 = 10o

Vì \(\Delta\) ABC cân ở A \(\Rightarrow\)BCA = (180o - BAC) : 2 = 80o

Ta có: \(\Delta\)BCE đều \(\Rightarrow\)ECB = 60o

Có: ACE + ECB = ACB

\(\Rightarrow\)ACE = ACB - ECB = 80o - 60o = 20o

\(\Rightarrow\)ACE = CAD

Xét \(\Delta\)DAC và \(\Delta\)ECA có:

AC: chung

ACE = CAD (cmt)

EC = AD (= BC)

\(\Rightarrow\)\(\Delta\)DAC = \(\Delta\)ECA (c.g.c)

\(\Rightarrow\)EAC = ECA = 10o (2 góc tương ứng)

Ta có: BDC = DAC + ECA = 20o + 10o =30o

Vậy BDC = 30o

16 tháng 1 2018

Sửa đầu bài chỗ AB= BC thì AD = BC mới lm đc:

 trong tam giác ABC lấy điểm M sao cho tam giác BMC đều

=> BM=CM => M thuộc trung trực của BC

Lại có : AB=AC(ABC cân tại A)

=> A thuộc trung trực của BC

Do đó : AM là trung trực của BC

=> AM là phân giác góc BAC

=> góc MAB = góc MAC = gốc BAC /2 = 20 độ/2=10 độ tam giác ABC cân tại A

=> góc CBA = góc BCA = (180 - gốc BAC)/2= (180 - 20)/2 = 80 độ

lại có : góc MCA = góc ACB - góc MCB góc MCB = 60 độ (Tg BCM đều)

Suy ra : góc MCA = 20 độ

Xet tg CMA va tg ADC co: 

AC chúng CM=ĐA (cùng bằng BC)

góc MCA = góc DAC (= 20 độ)

=> tg CMA = tg ADC ( c.g.c)

=> góc CDA = góc CMA = 150 độ

Mặt khác :

góc CDA + góc BDC = 180 độ (2 góc kề bù)

suy ra : góc BDC = 30 độ

16 tháng 3 2020

Đường trung trực của cạnh BC cắt AB ở E.

Trên nửa mặt phẳng bờ CE không chứ A vẽ tam giác đều CEM

\(\widehat{ECB}=\widehat{EBC}=20^0;\widehat{BCM}=40^0\)

\(EB=EC=EM\Rightarrow\Delta EBM\)cân tại E

Ta có \(\widehat{BEM}=\widehat{BEC}-\widehat{MEC}=80^0\Rightarrow\widehat{EBM}=50^0\)

\(\Rightarrow\widehat{MBC}=30^0\)

Từ đó dễ dàng chứng minh \(\Delta CEA=\Delta MCB\left(g-c-g\right)\)

\(\Rightarrow AE=BC\)(hai cạnh tương ứng)

Mà BC = AD (gt) nên AD = AE \(\Rightarrow D\equiv E\)

\(\Rightarrow\widehat{BCD}=\widehat{BCE}=20^0\)

Vậy \(\widehat{BCD}=20^0\)

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)