Chứng minh nếu \(\Delta ABC~\Delta MNP\) thì\(\left(\frac{P_{ABC}}{P_{MNP}}\right)^2=\frac{S_{ABC}}{S_{MNP}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ \(BH⊥AC;NK⊥MP\)
Khi đó ta thấy ngay \(\Delta MNK\sim\Delta ABH\left(g-g\right)\Rightarrow\frac{NK}{BH}=\frac{MN}{AB}\)
Lại có \(\frac{S_{MNP}}{S_{ABC}}=\frac{\frac{1}{2}.MP.NK}{\frac{1}{2}.AC.BH}=\frac{NK}{BH}.\frac{MP}{AC}=\frac{MN}{AB}.\frac{MP}{AC}=\frac{MN.MP}{AB.AC}\left(đpcm\right)\)
SỬA ĐỀ: "Chứng minh: \(\dfrac{S_{MNP}}{S_{ABC}}=\dfrac{MN.MP}{AB.AC}\)
Nếu bài này lớp 8 và đề như vậy theo mình không làm được vì:
Chưa học sin cos tan.....
Nếu c/m bằng tam giác đồng dạng thì thiếu dữ kiện
Đáp án đúng là A
Vì \(\Delta ABC\backsim\Delta MNP\) theo tỉ số \(k = 3\) nên \(\Delta MNP\backsim\Delta ABC\) theo tỉ số \(\frac{1}{3}\).
a) \(\widehat{BFC}=\widehat{BEC}=90o\) => tứ giác BFEC nội tiếp => \(\widehat{AEF}=\widehat{ABC;}\widehat{AFE}=\widehat{ABC}\)=> \(\Delta AEF~\Delta ABC\)
SAEF = \(\frac{1}{2}AE.AF.sinA\); SABC = \(\frac{1}{2}AB.AC.sinA\)=>\(\frac{S_{AEF}}{S_{ABC}}=\frac{AE.AF}{AB.AC}\)=cos2A (cosA = \(\frac{AE}{AB}=\frac{AF}{AC}\))
b) làm tương tự câu a ta được SBFD=cos2B.SABC; SCED=cos2C.SABC
=> SDEF =SABC-SAEF-SBFD-SCED = (1-cos2A-cos2B-cos2C)SABC
a) Ta có \(\frac{S_{AMP}}{S_{ABC}}=\frac{S_{AMP}}{S_{ABP}}.\frac{S_{ABP}}{S_{ABC}}=\frac{AM}{AB}.\frac{AP}{AC}=\frac{k}{k+1}.\frac{1}{k+1}=\frac{k}{\left(k+1\right)^2}\)
b) Hoàn toàn tương tự như câu a, ta có:
\(\frac{S_{MNB}}{S_{ABC}}=\frac{S_{NCP}}{S_{ABC}}=\frac{k}{\left(k+1\right)^2}\)
\(\Rightarrow S_{MNP}=S_{ABC}-S_{MAP}-S_{MBN}-S_{PNC}\)
\(=S-\frac{3k}{\left(k+1\right)^2}.S=\frac{k^2-k+1}{\left(k+1\right)^2}.S\)
c) Để \(S'=\frac{7}{16}S\Rightarrow\frac{k^2-k+1}{\left(k+1\right)^2}=\frac{7}{16}\)
\(\Rightarrow16k^2-16k+16=7k^2+14k+7\)
\(\Rightarrow9k^2-30k+9=0\Rightarrow\orbr{\begin{cases}k=3\\k=\frac{1}{3}\end{cases}}\)
CHÚ Ý: Tỷ số về diện tích bằng bình phương tỷ số đồng dạng
Áp dụng:
\(k=\frac{AB}{MN}=\frac{AC}{MP}=\frac{BC}{NP}=\frac{AB+BC+CA}{MN+NP+PM}=\frac{P_{ABC}}{P_{MNP}}\)
Vậy => \(\frac{S_{ABC}}{S_{MNP}}=k^2=\left(\frac{P_{ABC}}{P_{MNP}}\right)^2\)
ĐPCM
AM = MN = NP ; BP = PQ = QC nên AM = 1/3 AD ; MN = 1/2 MD ; QC = 1/3 BC ; PQ = 1/2 BQ
\(\Delta ABM,\Delta ABD\)có chung đường cao hạ từ B và đáy AM = 1/3 AD nên SABM = 1/3 SABD
\(\Delta QCD,\Delta BCD\)có chung đường cao hạ từ D và đáy QC = 1/3 BC nên SQCD = 1/3 SBCD
=> SMBQD = SABCD - (SABM + SQCD) = SABCD - 1/3 x (SABD + SBCD) = SABCD - 1/3 SABCD = 2/3 SABCD
\(\Delta MNQ,\Delta MDQ\)có chung đường cao hạ từ Q và đáy MN = 1/2 MD nên SMNQ = 1/2 SMDQ
\(\Delta MPQ,\Delta MBQ\)có chung đường cao hạ từ M và đáy PQ = 1/2 BQ nên SMPQ = 1/2 SMBQ
=> SMNQP = SMNQ + SMPQ = 1/2 x (SMDQ + SMBQ) = 1/2 x SMBQD = 1/2 x 2/3 x SABCD = 1/3 x 600 = 200 (cm2)