Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
SỬA ĐỀ: "Chứng minh: \(\dfrac{S_{MNP}}{S_{ABC}}=\dfrac{MN.MP}{AB.AC}\)
Nếu bài này lớp 8 và đề như vậy theo mình không làm được vì:
Chưa học sin cos tan.....
Nếu c/m bằng tam giác đồng dạng thì thiếu dữ kiện
CHÚ Ý: Tỷ số về diện tích bằng bình phương tỷ số đồng dạng
Áp dụng:
\(k=\frac{AB}{MN}=\frac{AC}{MP}=\frac{BC}{NP}=\frac{AB+BC+CA}{MN+NP+PM}=\frac{P_{ABC}}{P_{MNP}}\)
Vậy => \(\frac{S_{ABC}}{S_{MNP}}=k^2=\left(\frac{P_{ABC}}{P_{MNP}}\right)^2\)
ĐPCM
A B C D M N P Q M B Q D N P
AM = MN = NP ; BP = PQ = QC nên AM = 1/3 AD ; MN = 1/2 MD ; QC = 1/3 BC ; PQ = 1/2 BQ
\(\Delta ABM,\Delta ABD\)có chung đường cao hạ từ B và đáy AM = 1/3 AD nên SABM = 1/3 SABD
\(\Delta QCD,\Delta BCD\)có chung đường cao hạ từ D và đáy QC = 1/3 BC nên SQCD = 1/3 SBCD
=> SMBQD = SABCD - (SABM + SQCD) = SABCD - 1/3 x (SABD + SBCD) = SABCD - 1/3 SABCD = 2/3 SABCD
\(\Delta MNQ,\Delta MDQ\)có chung đường cao hạ từ Q và đáy MN = 1/2 MD nên SMNQ = 1/2 SMDQ
\(\Delta MPQ,\Delta MBQ\)có chung đường cao hạ từ M và đáy PQ = 1/2 BQ nên SMPQ = 1/2 SMBQ
=> SMNQP = SMNQ + SMPQ = 1/2 x (SMDQ + SMBQ) = 1/2 x SMBQD = 1/2 x 2/3 x SABCD = 1/3 x 600 = 200 (cm2)
Ta có: SAED = 1/14SABC => ED = 1/14BC
SAFD = 7/50SABC => FD = 7/50BC
=> EC = ED + DC = 1/14BC + 1/2BC = 4/7BC và EB = BC - EC = 3/7BC
=> EB/EC = 3/4 => AB/AC = 3/4 (= EB/EC, theo tính chất đường phân giác trong tam giác)
Hơn nữa SABF = SABD - SAFD = 1/2SABC - 7/50SABC = 9/25SABC
SACF = SACD + SAFD = 1/2SABC + 7/50SABC = 16/25SABC
=> SABF/SACF = 9/16 => FM/FN = 3/4 (với M, N là các chân đường cao hạ từ F xuống AB và AC)
Gọi I, J lần lượt là trung điểm các cạnh AB, AC
Các tam giác ∆ABF và ∆AFC vuông tại F => FI = 1/2AB, FJ = 1/2AC => FI/FJ = AB/AC = 3/4
Từ đó FM/FN = FI/FJ => ∆MIF ~ ∆NJF (ch - cgv) => ^MIF = ^NJF
Mà ∆IBF cân tại I, ∆AJF cân tại J
=> ^IFB = ^FAJ (1)
∆IAF cân tại I => ^IFA = ^IAF (2)
Từ (1) và (2) suy ra ^IAF + ^FAJ = ^IFA + ^IFB = 900 => ^BAC = 900.
Bạn tự vẽ hình nha
a, Xét \(\Delta BHA\) và \(\Delta BAC\) có :
\(\widehat{B}:chung\)
\(\widehat{BHA}=\widehat{BAC}=90^o\)
\(\Rightarrow\) \(\Delta BHA\sim\Delta BAC\left(g.g\right)\)
b, Đề phải là chứng minh AH2=BH.CH
Xét \(\Delta AHB\) và \(\Delta CHA\) có :
\(\widehat{AHB}=\widehat{CHA}=90^o\)
\(\widehat{ABH}=\widehat{CAH}\) ( cùng phụ với \(\widehat{BAH}\))
\(\Rightarrow\) \(\Delta AHB\sim\Delta CHA\left(g.g\right)\)
\(\Rightarrow\) \(\frac{AH}{BH}=\frac{CH}{AH}\)
\(\Rightarrow\) \(AH^2=BH.CH\)
c, \(\Delta ABH:\) \(\widehat{AHB}=90^o\)
\(\Rightarrow\) \(AB^2=BH^2+AH^2\) ( Định lý Py-ta-go )
\(=3^2+4^2=25\)
\(\Rightarrow\) \(AB=5\left(cm\right)\)
Ta có : \(\Delta BHA\sim\Delta BAC\) ( câu a )
\(\Rightarrow\) \(\frac{S_{\Delta BHA}}{S_{\Delta BAC}}=\frac{BH^2}{BA^2}=\frac{3^2}{5^2}=\frac{9}{25}\)
bạn ơi mình không hiểu chỗ \(\Delta\)ABH: \(\widehat{AHB}\)=900
A B C M N P H K
Kẻ \(BH⊥AC;NK⊥MP\)
Khi đó ta thấy ngay \(\Delta MNK\sim\Delta ABH\left(g-g\right)\Rightarrow\frac{NK}{BH}=\frac{MN}{AB}\)
Lại có \(\frac{S_{MNP}}{S_{ABC}}=\frac{\frac{1}{2}.MP.NK}{\frac{1}{2}.AC.BH}=\frac{NK}{BH}.\frac{MP}{AC}=\frac{MN}{AB}.\frac{MP}{AC}=\frac{MN.MP}{AB.AC}\left(đpcm\right)\)