K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
CH
Cô Hoàng Huyền
Admin
VIP
17 tháng 5 2017
Kẻ \(BH⊥AC;NK⊥MP\)
Khi đó ta thấy ngay \(\Delta MNK\sim\Delta ABH\left(g-g\right)\Rightarrow\frac{NK}{BH}=\frac{MN}{AB}\)
Lại có \(\frac{S_{MNP}}{S_{ABC}}=\frac{\frac{1}{2}.MP.NK}{\frac{1}{2}.AC.BH}=\frac{NK}{BH}.\frac{MP}{AC}=\frac{MN}{AB}.\frac{MP}{AC}=\frac{MN.MP}{AB.AC}\left(đpcm\right)\)
HV
22 tháng 3 2020
a, ABD đồng dạng ACE (g.g) (có chung góc A và cùng có 1 góc vuông)
b, từ câu a => AD/AB = AE/AC
2 tam giác có chung góc A => đồng dạng (c.g.c)
Ta có: SAED = 1/14SABC => ED = 1/14BC
SAFD = 7/50SABC => FD = 7/50BC
=> EC = ED + DC = 1/14BC + 1/2BC = 4/7BC và EB = BC - EC = 3/7BC
=> EB/EC = 3/4 => AB/AC = 3/4 (= EB/EC, theo tính chất đường phân giác trong tam giác)
Hơn nữa SABF = SABD - SAFD = 1/2SABC - 7/50SABC = 9/25SABC
SACF = SACD + SAFD = 1/2SABC + 7/50SABC = 16/25SABC
=> SABF/SACF = 9/16 => FM/FN = 3/4 (với M, N là các chân đường cao hạ từ F xuống AB và AC)
Gọi I, J lần lượt là trung điểm các cạnh AB, AC
Các tam giác ∆ABF và ∆AFC vuông tại F => FI = 1/2AB, FJ = 1/2AC => FI/FJ = AB/AC = 3/4
Từ đó FM/FN = FI/FJ => ∆MIF ~ ∆NJF (ch - cgv) => ^MIF = ^NJF
Mà ∆IBF cân tại I, ∆AJF cân tại J
=> ^IFB = ^FAJ (1)
∆IAF cân tại I => ^IFA = ^IAF (2)
Từ (1) và (2) suy ra ^IAF + ^FAJ = ^IFA + ^IFB = 900 => ^BAC = 900.