cho tam giác ABC vg tại A, AH là đường cao . M là trung điểm của CD . đường thẳng qua H cắt AC,AD tại E,F.
CMR:góc DBF =góc EBC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: Xét ΔMAD và ΔMBH có
góc MAD=góc MBH
MA=MB
góc AMD=góc BMH
=>ΔMAD=ΔMBH
=>AD=BH
mà AD//BH
nên ADBH là hình bình hành
=>BD=AH
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: Đề sai rồi bạn
a, xét tam giác ABC và tam giác DBE có : góc B chung
AB = BD (Gt)
góc BAC = góc BDE = 90
=> tam giác ABC = tam giác DBE (cgv-gnk)
b, xét tam giác ABH và tam giác DBH có : BH chung
AB = BD (Gt)
góc HAB = góc HDB = 90
=> tam giác ABH = tam giác DBH (ch-cgv)
=> góc ABH = góc DBH (đn) mà BH nằm giữa AB và BD
=> BH là pg của góc ABC (đn)
c, AB = BD (gt) có BD = 6 (gt)
=> AB = 6
BD + DC = BC
BD = 6; CD = 4
=> BC =10
tam giác ABC vuông tại A (Gt)
=> BC^2 = AB^2 + AC^2
=> AC^2 = 10^2 - 6^2
=> AC^2 = 64
=> AC = 8 do AC > 0
Tham khảo
a) Xét 2 tam giác vuông ΔAHB và ΔAHC có:
AH chung
AB = AC (GT)
⇒ Δ AHB = ΔAHC (cạnh huyền - cạnh góc vuông)
b) Ta có : Δ AHB = Δ AHC (câu a)
⇒ ˆBAH=ˆCAHBAH^=CAH^ ( 2 góc tương ứng) (1)
Ta lại có: HD // AC ( GT )
⇒ ˆDHA=ˆCAHDHA^=CAH^ (2 góc so le trong) (2)
Từ (1) và (2) => ˆDHA=ˆBAHDHA^=BAH^
Hay: ˆDHA=ˆDAHDHA^=DAH^
=> ΔADH cân tại D
=> AD = DH
c) Ta có: ΔABH = ΔACH (câu a)
⇔ BH =HC (hai cạnh tương ứng)
⇒ AH là trung tuyến ΔABC tại A ( 3)
Ta có : DH //AC ⇒ ∠DHB = ∠ACB ( 2 góc đồng vị )
Mà ΔABC cân tại A (GT)
⇒ ∠ABC= ∠ACB
⇒ ∠DHB = ∠DBH
=> ΔDHB cân tại D
⇒ DB =DH
Lại có AD = DH (câu b) ⇒ DA=DB
⇒ CD là trung tuyến ΔABC (4)
Từ (3), (4) ta có: AC cắt CD tại G ⇒ G là trọng tâm Δ ABC
Mà CE =EA ⇒ BE là trung tuyến Δ ABC tại B
⇒ BE qua G ⇒ B,G,E thẳng hàng