Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: Xét ΔEDC vuông tại E và ΔHDA vuông tại H có
góc EDC=góc HDA
=>ΔEDC đồng dạng với ΔHDA
=>DE/DH=DC/DA=EC/HA
=>DC*HA=DA*EC
c: DE/DH=DC/DA
=>DE/DC=DH/DA
=>ΔDEH đồng dạng với ΔDCA
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC~ΔHBA
b: Xét ΔAHD vuông tại H và ΔCED vuông tại E có
\(\widehat{ADH}=\widehat{CDE}\)(hai góc đối đỉnh)
Do đó: ΔAHD~ΔCED
=>\(\dfrac{AH}{CE}=\dfrac{DA}{DC}\)
=>\(AH\cdot DC=CE\cdot AD\)
c: Ta có: ΔAHD~ΔCED
=>\(\dfrac{DA}{DC}=\dfrac{DH}{DE}\)
=>\(\dfrac{DA}{DH}=\dfrac{DC}{DE}\)
Xét ΔDAC và ΔDHE có
\(\dfrac{DA}{DH}=\dfrac{DC}{DE}\)
\(\widehat{ADC}=\widehat{HDE}\)(hai góc đối đỉnh)
Do đó: ΔDAC~ΔDHE
d: Xét ΔCAF có
AE,CH là các đường cao
AE cắt CH tại D
Do đó: D là trực tâm của ΔCAF
=>DF\(\perp\)AC
mà AB\(\perp\)AC
nên DF//AB
Xét ΔHDF vuông tại H và ΔHBA vuông tại H có
HD=HB
\(\widehat{HDF}=\widehat{HBA}\)(hai góc so le trong, DF//AB)
Do đó: ΔHDF=ΔHBA
=>HF=HA
=>H là trung điểm của AF
Xét tứ giác ABFD có
H là trung điểm chung của AF và BD
=>ABFD là hình bình hành
Hình bình hành ABFD có AF\(\perp\)BD
nên ABFD là hình thoi
a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC\(\sim\)ΔHBA(g-g)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=9^2+12^2=225\)
hay BC=15(cm)
Vậy: BC=15cm
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: Đề sai rồi bạn