K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: Xét ΔMAD và ΔMBH có

góc MAD=góc MBH

MA=MB

góc AMD=góc BMH

=>ΔMAD=ΔMBH

=>AD=BH

mà AD//BH

nên ADBH là hình bình hành

=>BD=AH

24 tháng 4 2021

a) Xét hai tam giác vuông ΔAHB và ΔAHC ta có:

AH chung

AB = AC (GT)

⇒ Δ AHB = ΔAHC ( cạnh huyền - cạnh góc vuông )

b) Ta có : ΔAHB = ΔAHC ( theo phần a )

=> Góc BAH = Góc CAH ( hai góc tương ứng )     (*)

Ta lại có: HD // AC ( GT )

=> Góc DHA = Góc CAH ( hai góc so le trong )     (**)

Từ (*) và (**) => Góc DHA = Góc BAH

=> ΔADH cân tại D

=> AD = DH

c) Ta có: ΔABH = ΔACH ( theo phần a)

⇔ BH =HC ( hai cạnh tương ứng )

⇒ AH là trung tuyến ΔABC tại A     (***)

Ta có : DH // AC ⇒ ∠DHB = ∠ACB ( hai góc đồng vị )

Mà ΔABC cân tại A ( GT )

⇒ ∠ABC= ∠ACB

⇒ ∠DHB = ∠DBH

=> ΔDHB cân tại D

=> DB =DH

Lại có AD = DH ( theo phần b ) => DA = DB

=> CD là trung tuyến ΔABC     (****)

Từ (***) và (****) ta có: 

AC cắt CD tại G => G là trọng tâm ΔABC

Mà CE = EA => BE là trung tuyến ΔABC tại B

=> BE qua G => B, G, E thẳng hàng

24 tháng 4 2021

B H C K A D E G

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC...
Đọc tiếp

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông
2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân
3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại E. CM DE =DB +EC
4. CHO TAM GIÁC ABC VUÔNG TẠI A và góc B =60°. Cx vuông góc với BC, trên tia Cx lấy đoạn CE=CA ( CE, CA CÙNG PHÍA VỚI BC ). KÉO DÀI CB LẤY F : BF =BA. CM TAM GIÁC ABC ĐỀU VÀ 3 ĐIỂM E, A, F THẲNG HÀNG
5. Cho tam giác ABD : góc B=2D, kẻ AH vuông góc với BD  (H thuộc BD ). Trên tia đối của tia BA lấy BE =BH. Đường thẳng EH cắt AD tại F. CM FH=FA =FD
6. Cho tam giác ABC cân tại A, đường cao AH. Trên tia AH lấy điểm D sao cho H là trung điểm của đoạn thẳng AD. Nối CD. CM CD=AB và CB là tia phân giác của góc ACD
7. CHO tam giác ABC cân tại A, đường cao BH. CMR góc BAC =2 CBH
8. Cho tam giác ABC có góc B =60, 2 tia phân giác AD và CE của tam giác cắt nhau tại I. CMR tam giác IDE cân
9. Cho tam giác ABC cân tại A, đường cao AH, HD, HE lần lượt là đường cao của tam giác AHB, AHC. trên tia đối của tia DH, EH lấy điểm M, N: DM=DB,  EN =EH.CMR: a) tam giác AMN và tam giác HMN cân b) góc MAN=2BAC

1
11 tháng 9 2018

Bạn tham khảo ở đây:

Câu hỏi của Trần Ngọc Mai Anh - Toán lớp 7 - Học toán với OnlineMath

13 tháng 5 2018

tham khảo ở đây : Câu hỏi của Trần Ngọc Mai Anh - Toán lớp 7 - Học toán với OnlineMath

5 tháng 5 2024

Ê có lời giải ko mn 

1: Xét ΔBDH có \(\widehat{DBH}=\widehat{DHB}\left(=\widehat{ACB}\right)\)

nên ΔBDH cân tại D

Xét ΔABC có 

H là trung điểm của BC

HD//AC
Do đó: D là trung điểm của AB

2: Xét ΔABC có

CD là đường trung tuyến

AH là đường trung tuyến

CD cắt AH tại G

Do đó: G là trọng tâm của ΔABC

=>BG là đường trung tuyến ứng với cạnh AC

mà E là trung điểm của AC

nên B,G,E thẳng hàng

 

4 tháng 3 2022

help vs cần gấp lắm ko cần hình đâu