Tính tổng
1+2+...+100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{100-(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{99}{100}}\)
Xét các mẫu số của dãy phân số : \(\dfrac{1}{1};\dfrac{1}{2};....;\dfrac{1}{100}\)
ta có dãy số: 1; 2; ....;100
Dãy số trên có số số hạng là: ( 100 - 1) : 1 + 1 = 100 (số)
Tách 100 thành tổng của 100 số 1 rồi nhóm lần lượt 1 với từng phân số thuộc dãy phân số trên khi đó ta có:
A = \(\dfrac{100-(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+.....+\dfrac{99}{100}}\)
A = \(\dfrac{(1-1)+(1-\dfrac{1}{2})+(1-\dfrac{1}{3})+....+(1-\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+.....+\dfrac{99}{100}}\)
A = \(\dfrac{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+....+\dfrac{99}{100}}\)
A = 1
\(a\)
\(2+4+6+...+100\)(50 số hạng)
\(=\left(100+2\right).50:2\)
\(=102.50:2\)
\(=2550\)
\(b\)
\(1+3+5+7+...+99\)(50 số hạng)
\(=\left(99+1\right).50:2\)
\(=100.50:2\)
\(=2500\)
*Cách tính tổng 1 dãy số có quy luật : (số lớn nhất + số bé nhất) . số số hang : 2
học tốt!!!
a, dãy số các số chẵn từ 2 đến 100 là :
2;4;6;....; 98;100
dãy số trên có số số hạng là :
( 100 - 2 ) : 2 + 1 = 50 ( số )
tổng dãy số trên là :
( 100 + 2 ) * 50 : 2 = 2550
b, ta có dãy số lẻ từ 1 đến đến 100 là :
1;2;3 ; ... ' 97; 99
dãy số trên có số hạng là :
( 99- 1 ) : 2 +1 = 50 ( só hạng )
tổng dãy số trên là :
( 99+1 ) *50 :2 = 2500
đáp số
a, Số số hạng: (100 - 1) : 1 + 1 = 100
S = (100 + 1)100 : 2 = 5050
b, Số số hạng: (200 -2) : 2 + 1 = 100
S = (200 + 2).100 : 2 = 10100
C = 4 + 7 + 10 + 13 + .... + 301
số các số hạng của dãy số :
(301 + 4) : 3 + 1 =100 ( số hạng )
tổng là :
( 301 + 4 ) : 2 .100 =15250
=>C=15250
D = 5 + 9 + 13 + 17 + .. .+201
= (9+201)+(13+197)+....+(5+105)
= 210+210+...+110
= 210.48 +110
= 10190
bài 2
a)Gọi số đó là a. Ta có:
(a-5):3+1=100
=> a=302
b)Tổng 100 số hạng đầu tiên là:
(302+5)x100:2=15350
Đ/s: a) 302;
b) 15350
\(S=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\\ 2S=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}\\ 2S-S=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\right)\\ S=1-\dfrac{1}{2^{100}}=\dfrac{2^{100}-1}{2^{100}}\)
Số số hạng là : (100-1):1+1=100(số hạng)
A=(100+1):2×100=5050
Số số hạng là : (100-2):2+1=50(số hạng)
B=(100+2):2×50=2550
Số số hạng là : (100-1):2+1=50,5(số hạng)
C=(100+1):2×50,5=2550,25
\(1^2+2^2+3^2+...+100^2=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+100\left(101-1\right)=1.2-1+2.3-2+3.4-4+...+100.101-100=\left(1.2+2.3+3.4+...+100.101\right)-\left(1+2+3+...+100\right)=\dfrac{3\left(1.2+2.3+3.4+...+3.100.101\right)}{3}-\left(1+2+3+...+100\right)=\dfrac{1.2.3+2.3.\left(4-1\right)+3.4\left(5-2\right)+...+100.101\left(102-99\right)}{3}-\dfrac{\left(100+1\right)\left(\dfrac{100-1}{1}+1\right)}{2}=\dfrac{1.2.3-1.2.3+2.3.4-2.3.4+...+-99.100.101+100.101.102}{3}-5050=\dfrac{100.101.102}{3}-5050=343400-5050=338350\)
uses crt;
var s,i:integer;
begin
clrscr;
s:=0;
for i:=1 to 100 do
s:=s+i;
write(s);
readln;
end.
1 + 2 + .....+ 100
dãy số trên có số số hạng là: (100 - 1): 1 + 1 = 100 (số)
tổng trên là: (1+100)x100:2= 5050
đs....
đề bài là j vậy bn