\(1^2+2^2+3^2+...+100^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2021

Tham Khao

15 tháng 9 2021

\(1^2+2^2+3^2+...+100^2=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+100\left(101-1\right)=1.2-1+2.3-2+3.4-4+...+100.101-100=\left(1.2+2.3+3.4+...+100.101\right)-\left(1+2+3+...+100\right)=\dfrac{3\left(1.2+2.3+3.4+...+3.100.101\right)}{3}-\left(1+2+3+...+100\right)=\dfrac{1.2.3+2.3.\left(4-1\right)+3.4\left(5-2\right)+...+100.101\left(102-99\right)}{3}-\dfrac{\left(100+1\right)\left(\dfrac{100-1}{1}+1\right)}{2}=\dfrac{1.2.3-1.2.3+2.3.4-2.3.4+...+-99.100.101+100.101.102}{3}-5050=\dfrac{100.101.102}{3}-5050=343400-5050=338350\)

6 tháng 9 2019

\(A=1+3+3^2+...+3^{100}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{101}\)

\(\Rightarrow3A-A=3^{101}-1\)

\(\Rightarrow A=\frac{3^{101}-1}{2}\)

26 tháng 9 2019

\(3+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+3+...+100}\)

\(=3+3.\left(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\right)\)

\(=3+3.\left(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{5050}\right)\)

\(=3+3.\frac{1}{2}.\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{10100}\right)\)

\(=3+\frac{3}{2}.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)

\(=3+\frac{3}{2}.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(=3+\frac{3}{2}.\left(\frac{1}{2}-\frac{1}{101}\right)\)

\(=3+\frac{3}{2}.\frac{99}{202}\)

\(=3+\frac{297}{404}\)

\(=\frac{1509}{404}\)

26 tháng 9 2019

chỗ 3+3/2(1/6+..)

bn nhìn nhầm rồi

đáng lẽ: 3+(1/6+,.....) chứ nâk

28 tháng 2 2021

ta có

S=1+ 1/2 +1/2^2 +..+1/2^100

=> S/2 -S=1/2+ 1/2^2+...+1/2^101-1-1/2-...1/2^100

=> -S/2=1/2^101-1

=> -S/2=(1-2^101)/2^101

=> S=-2*(1-2^101)/2^101

=> S=(2^101-1)/2^100

26 tháng 12 2016

A=1002.12+1002.22+1002.32+...+1002.102

=1002(12+22+32+...+102)=1002.385=3850000

26 tháng 10 2016

Ta có:

\(A=100^2+200^2+300^2+...+5000^2\)

\(\Rightarrow A=\left(1.100\right)^2+\left(2.100\right)^2+\left(3.100\right)^2+...+\left(50.100\right)^2\)

\(\Rightarrow A=1^2.100^2+2^2.100^2+3^2.100^2+...+50^2.100^2\)

\(\Rightarrow A=\left(1^2+2^2+3^2+...+50^2\right).100^2\)

\(\Rightarrow A=42925.100^2\)

\(\Rightarrow A=429250000\)

Vậy A = 429250000

15 tháng 4 2017

\(\frac{1}{2}A=\frac{1}{2}+\frac{3}{2^4}+\frac{4}{2^5}+...+\frac{100}{2^{101}}\)

\(A-\frac{1}{2}A=\frac{1}{2}+\frac{3}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}-\frac{100}{2^{101}}\)

\(\frac{1}{2}A=\left(1-\frac{1}{2^{101}}\right)\div\frac{1}{2}-\frac{100}{2^{101}}\)

\(=\frac{2^{101}-1}{2^{100}}-\frac{100}{2^{101}}\)

\(\Rightarrow A=\frac{\left(2^{101}-1\right)}{2^{99}}-\frac{100}{2^{100}}\)

19 tháng 12 2016

Ta có : 

1002 - 992 = ( 100 - 99 ) ( 100 + 99 ) =1 ( 100 + 99 ) = 99 + 100

982 - 972 = ( 98 - 97 ) ( 98 + 97 ) = 1.( 98 + 97 ) = 97 + 98

..........

22 - 12 = ( 2 - 1 ) ( 2 + 1 ) = 1 ( 2 + 1 ) = 1 + 2

=> 1002 - 992 + 982 - 97 2 + ..... + 22 - 12 = 1 + 2 + 3 + ..... + 99 + 100 = 100.101/2 = 5050

19 tháng 12 2016

Xem lại đề -....+ quy luật thay đổi ? thay đổi từ chỗ nào

22 tháng 5 2017

Câu 1 có sai đề bài không đấy?

22 tháng 5 2017

Câu 2: Ta có \(S=6^2+18^2+30^2+...+126^2\)

                   \(S=6^2\left(1^2+3^2+5^2+...+21^2\right)\)

                       \(=6^2.1771=36.1771=63756\)

15 tháng 7 2019

\(a,A=1^2+3^2+5^2+...+99^2\)

\(A=1+2^2+3^2+4^2+5^2+...+99^2\)

\(A=1+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)

\(A=\left(2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)

\(A=\frac{99.100.101}{3}-\frac{99.\left(99+1\right)}{2}\)

\(A=333300-4950=328350\)