K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2022

(-c)(-b)=bc 

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) Vì BD là tia phân giác của góc ABC nên \(\widehat {{B_1}} = \widehat {{B_2}} = \dfrac{1}{2}.\widehat {ABC}\)

Vì CD là tia phân giác của góc ACB nên \(\widehat {{C_1}} = \widehat {{C_2}} = \dfrac{1}{2}.\widehat {ACB}\)

Xét \(\Delta BDP\) vuông tại P và \(\Delta BDR\) vuông tại R, ta có:

 \(\widehat {{B_2}} = \widehat {{B_1}}\)

BD chung

\( \Rightarrow \Delta BDP = \Delta BDR\) ( cạnh huyền – góc nhọn)

\( \Rightarrow \) DP = DR ( 2 cạnh tương ứng) (1)

b) Xét \(\Delta CDP\) vuông tại P và \(\Delta CDQ\) vuông tại Q, ta có:

 \(\widehat {{C_2}} = \widehat {{C_1}}\)

CD chung

\( \Rightarrow \Delta CDP = \Delta CDQ\) ( cạnh huyền – góc nhọn)

\( \Rightarrow \) DP = DQ ( 2 cạnh tương ứng) (2)

c) Từ (1) và (2), ta được: DR = DQ ( cùng bằng DP).

D nằm trên tia phân giác của góc A do D cách đều AB và AC.

12 tháng 5 2022

\(a,\dfrac{a}{b}=\dfrac{ad}{bd}\) và \(\dfrac{c}{d}=\dfrac{bc}{bd}\). Do \(\dfrac{a}{b}< \dfrac{c}{d}\) nên \(\dfrac{ad}{bd}< \dfrac{bc}{bd}\).

Suy ra \(ad< bc\)

\(b,\dfrac{a}{b}< \dfrac{c}{d}\) suy ra \(ad< bc\). Do đó \(ab+ad< ab+bc\) nên \(a\left(b+d\right)< b\left(a+c\right)\) 

Vậy \(\dfrac{a}{b}< \dfrac{a+c}{b+d}.\) Từ \(ad< bc\) ta cũng có \(ad+cd< bc+cd\) nên \(\left(a+c\right)d< \left(b+d\right)c\)

\(\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\)

2 tháng 5 2022

a, Vật nhiễm điện cùng loại : A,B 

- 2 loại nhiễm loại điện giống nhau tích thì đẩy nhau

b, Vật nhiễm điện khác loại :C,D

- 2 loại nhiễm loại điện khác nhau điện thì hút nhau

25 tháng 7 2019

Sử dụng tính chất của dãy tỉ số bằng nhau đó bạn

17 tháng 5 2022

\(\dfrac{a}{b}=\dfrac{a\left(b+c\right)}{b\left(b+c\right)}=\dfrac{ab}{b\left(b+c\right)}+\dfrac{ac}{b\left(b+c\right)};\dfrac{a+c}{b+c}=\dfrac{b\left(a+c\right)}{b\left(b+c\right)}=\dfrac{ab}{b\left(b+c\right)}+\dfrac{bc}{b\left(b+c\right)}\)

Theo đề bài \(\dfrac{a}{b}< 1\) suy ra \(a< b\) nên \(ac< bc\). Do đó \(\dfrac{ac}{b\left(b+c\right)}< \dfrac{bc}{b\left(b+c\right)}\)

Suy ra \(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)

 

9 tháng 5 2022

Biến đổi `:`

`a/b > ( a + c )/(  b + c )`

`<=> a( b + c ) > b( a + c )`

`<=> ab + ac > ab + bc`

`<=> ab+ac-ab>ab+bc-ab`

`<=> ac>bc`

`<=> ( ac )/( bc ) = a/b > 1` `(` luôn đúng `)`

 

9 tháng 5 2022

\(\dfrac{a}{b}=\dfrac{a\left(b+c\right)}{b\left(b+c\right)}=\dfrac{ab}{b\left(b+c\right)}+\dfrac{ac}{b\left(b+c\right)};\dfrac{a+c}{b+c}=\dfrac{b\left(a+c\right)}{b\left(b+c\right)}=\dfrac{ab}{b\left(b+c\right)}+\dfrac{bc}{b\left(b+c\right)}\)

Ta có \(\dfrac{a}{b}>1,\) suy ra \(a>b\) nên ac > bc. Do đó, \(\dfrac{ac}{b\left(b+c\right)}>\dfrac{bc}{b\left(b+c\right)}\), suy ra \(\dfrac{a}{b}>\dfrac{a+c}{b+c}\)

19 tháng 8 2023

a) Ta có:

\(CD\perp AD\)

\(AB\perp AD\)

\(\Rightarrow CD//AB\)

b) Ta có: 

\(AB//CD\)

Nên: \(\widehat{B}+\widehat{C}=180^o\)

Do hai góc này ở vị trí trong cùng phía

 

9 tháng 5 2021

A B C D

a) Xét ABD và EBD có

        BD cạnh chung

        BAD=BED(=90)

        ABD=EBD(vì BD là tia phân giác của B)

b ko biet

 

9 tháng 5 2021

b)Vì theo ý a) BAD=BED và BD là tia phân giác của B. Nên ADE là tam giác cân