K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2022

Biến đổi `:`

`a/b > ( a + c )/(  b + c )`

`<=> a( b + c ) > b( a + c )`

`<=> ab + ac > ab + bc`

`<=> ab+ac-ab>ab+bc-ab`

`<=> ac>bc`

`<=> ( ac )/( bc ) = a/b > 1` `(` luôn đúng `)`

 

9 tháng 5 2022

\(\dfrac{a}{b}=\dfrac{a\left(b+c\right)}{b\left(b+c\right)}=\dfrac{ab}{b\left(b+c\right)}+\dfrac{ac}{b\left(b+c\right)};\dfrac{a+c}{b+c}=\dfrac{b\left(a+c\right)}{b\left(b+c\right)}=\dfrac{ab}{b\left(b+c\right)}+\dfrac{bc}{b\left(b+c\right)}\)

Ta có \(\dfrac{a}{b}>1,\) suy ra \(a>b\) nên ac > bc. Do đó, \(\dfrac{ac}{b\left(b+c\right)}>\dfrac{bc}{b\left(b+c\right)}\), suy ra \(\dfrac{a}{b}>\dfrac{a+c}{b+c}\)

Xét ΔMBD và ΔMAB có

góc MBD=góc MAB

góc M chung

=>ΔMBD đồng dạng với ΔMAB

=>MB/MA=MD/MB

=>MB^2=MA*MD

30 tháng 3 2023

không í đề là CM:    MB^2=AD*AM á bạn

30 tháng 12 2023

DM và DE là hai tia đối nhau

=>D nằm giữa M và E

mà DM=DE

nên D là trung điểm của ME

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MB=MC

Xét tứ giác AMBE có

D là trung điểm chung của AB và ME

=>AMBE là hình bình hành

Hình bình hành AMBE có MA=MB

nên AMBE là hình thoi

26 tháng 12 2023

loading...  

27 tháng 12 2023

Vậy Duy có thể "giải thích tại sao tứ giác AEMC là hình bình hành" không ạ, Giúp tớ với.

27 tháng 11 2023

a,A =  \(\dfrac{3x^2+6xy}{6x^2}\)  (đk  \(x\) ≠ 0)

  A = \(\dfrac{3x.\left(x+2y\right)}{6x^2}\)

 A = \(\dfrac{x+2y}{2x}\) 

27 tháng 11 2023

b,B =  \(\dfrac{2x^2-x^3}{x^2-4}\) (đk \(x\)2  - 4 ≠ 0 ⇒ \(x\) ≠ \(\pm\) 2)

   B =  \(\dfrac{x^2\left(2-x\right)}{\left(x+2\right)\left(x-2\right)}\)

   B = \(\dfrac{-x^2.\left(x-2\right)}{\left(x+2\right).\left(x-2\right)}\)

   B =  \(\dfrac{-x^2}{x+2}\)

1 tháng 5 2023

a. Xét  Δ HBA và  Δ ABC

     \(\widehat{H}\) = \(\widehat{A}\) = 900 (gt)

      \(\widehat{B}\) chung

\(\Rightarrow\)  Δ HBA \(\sim\)  Δ ABC (g.g) (1)

 Xét  Δ HAC và  Δ ABC:

     \(\widehat{H}\) = \(\widehat{A}\) = 900 (gt)

       \(\widehat{C}\) chung

\(\Rightarrow\)  Δ HAC \(\sim\)  Δ ABC (g.g) (2)

Từ (1) và (2) \(\Rightarrow\) Δ HBA  \(\sim\)  Δ HAC 

b. Ta có:  Δ ABC vuông tại A

  Theo đ/lí Py - ta - go:

  BC2 = AB2 + AC2 

  BC2 = 62 + 82

\(\Rightarrow\) BC2 = 100

\(\Rightarrow\) BC = \(\sqrt{100}\) = 10 cm

Ta có: Δ HBA  \(\sim\)  Δ ABC: 

   \(\dfrac{HA}{AC}\) = \(\dfrac{BA}{BC}\) 

\(\Rightarrow\) \(\dfrac{HA}{8}\) = \(\dfrac{6}{10}\) 

\(\Rightarrow\) HA = 4,8 cm

 \(\dfrac{HB}{AB}\) = \(\dfrac{BA}{BC}\)  \(\Leftrightarrow\) \(\dfrac{HB}{6}\) = \(\dfrac{6}{10}\) 

\(\Rightarrow\) HB = 3,6 cm

Ta có:  Δ HAC \(\sim\)  Δ ABC

 \(\dfrac{HC}{AC}\) = \(\dfrac{AC}{BC}\) 

\(\Rightarrow\) \(\dfrac{HC}{8}\) = \(\dfrac{8}{10}\) 

\(\Rightarrow\) HC = 6,4cm

c. Ta có: Δ HBA \(\sim\)  Δ HAC

  \(\dfrac{HA}{HB}\) = \(\dfrac{HC}{HA}\) 

AH2 = HB . HC

Ta có : Δ HBA  \(\sim\)  Δ ABC 

    \(\dfrac{BA}{BC}\) = \(\dfrac{HB}{AB}\) 

\(\Rightarrow\) AB2 = HB . BC

 

 

1 tháng 5 2023

Giúp mik với. Cần gấp ạaaaaa