Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(a,b,c\in N.\) Giải thích tại sao, nếu \(\dfrac{a}{b}>1\) thì \(\dfrac{a}{b}>\dfrac{a+c}{b+c}\)
Biến đổi `:`
`a/b > ( a + c )/( b + c )`
`<=> a( b + c ) > b( a + c )`
`<=> ab + ac > ab + bc`
`<=> ab+ac-ab>ab+bc-ab`
`<=> ac>bc`
`<=> ( ac )/( bc ) = a/b > 1` `(` luôn đúng `)`
\(\dfrac{a}{b}=\dfrac{a\left(b+c\right)}{b\left(b+c\right)}=\dfrac{ab}{b\left(b+c\right)}+\dfrac{ac}{b\left(b+c\right)};\dfrac{a+c}{b+c}=\dfrac{b\left(a+c\right)}{b\left(b+c\right)}=\dfrac{ab}{b\left(b+c\right)}+\dfrac{bc}{b\left(b+c\right)}\)
Ta có \(\dfrac{a}{b}>1,\) suy ra \(a>b\) nên ac > bc. Do đó, \(\dfrac{ac}{b\left(b+c\right)}>\dfrac{bc}{b\left(b+c\right)}\), suy ra \(\dfrac{a}{b}>\dfrac{a+c}{b+c}\)
Xét ΔMBD và ΔMAB có
góc MBD=góc MAB
góc M chung
=>ΔMBD đồng dạng với ΔMAB
=>MB/MA=MD/MB
=>MB^2=MA*MD
DM và DE là hai tia đối nhau
=>D nằm giữa M và E
mà DM=DE
nên D là trung điểm của ME
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MB=MC
Xét tứ giác AMBE có
D là trung điểm chung của AB và ME
=>AMBE là hình bình hành
Hình bình hành AMBE có MA=MB
nên AMBE là hình thoi
a,A = \(\dfrac{3x^2+6xy}{6x^2}\) (đk \(x\) ≠ 0)
A = \(\dfrac{3x.\left(x+2y\right)}{6x^2}\)
A = \(\dfrac{x+2y}{2x}\)
b,B = \(\dfrac{2x^2-x^3}{x^2-4}\) (đk \(x\)2 - 4 ≠ 0 ⇒ \(x\) ≠ \(\pm\) 2)
B = \(\dfrac{x^2\left(2-x\right)}{\left(x+2\right)\left(x-2\right)}\)
B = \(\dfrac{-x^2.\left(x-2\right)}{\left(x+2\right).\left(x-2\right)}\)
B = \(\dfrac{-x^2}{x+2}\)
a. Xét Δ HBA và Δ ABC
\(\widehat{H}\) = \(\widehat{A}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) Δ HBA \(\sim\) Δ ABC (g.g) (1)
Xét Δ HAC và Δ ABC:
\(\widehat{H}\) = \(\widehat{A}\) = 900 (gt)
\(\widehat{C}\) chung
\(\Rightarrow\) Δ HAC \(\sim\) Δ ABC (g.g) (2)
Từ (1) và (2) \(\Rightarrow\) Δ HBA \(\sim\) Δ HAC
b. Ta có: Δ ABC vuông tại A
Theo đ/lí Py - ta - go:
BC2 = AB2 + AC2
BC2 = 62 + 82
\(\Rightarrow\) BC2 = 100
\(\Rightarrow\) BC = \(\sqrt{100}\) = 10 cm
Ta có: Δ HBA \(\sim\) Δ ABC:
\(\dfrac{HA}{AC}\) = \(\dfrac{BA}{BC}\)
\(\Rightarrow\) \(\dfrac{HA}{8}\) = \(\dfrac{6}{10}\)
\(\Rightarrow\) HA = 4,8 cm
\(\dfrac{HB}{AB}\) = \(\dfrac{BA}{BC}\) \(\Leftrightarrow\) \(\dfrac{HB}{6}\) = \(\dfrac{6}{10}\)
\(\Rightarrow\) HB = 3,6 cm
Ta có: Δ HAC \(\sim\) Δ ABC
\(\dfrac{HC}{AC}\) = \(\dfrac{AC}{BC}\)
\(\Rightarrow\) \(\dfrac{HC}{8}\) = \(\dfrac{8}{10}\)
\(\Rightarrow\) HC = 6,4cm
c. Ta có: Δ HBA \(\sim\) Δ HAC
\(\dfrac{HA}{HB}\) = \(\dfrac{HC}{HA}\)
AH2 = HB . HC
Ta có : Δ HBA \(\sim\) Δ ABC
\(\dfrac{BA}{BC}\) = \(\dfrac{HB}{AB}\)
\(\Rightarrow\) AB2 = HB . BC
(-c)(-b)=bc