Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo pitago ta tính đc BC = 10 cm
b) tam giác AHB đồng dạng tam giác CAB do có AHB =CAB = 90 độ & BAH = BCA ( cùng phụ ABC ) ,suy ra tam giác AHB đồng dạng CAB (gg)
tam giác AHC đồng dạng tam giác BAC ( Tương tự )
c) tam giác HBA đồng dạng ABC nên S(HBA ): S(ABC )= (AB/BC)2
Tam giác HAC đồng dạng tam giác ABC nên S(HAC)/S(ABC)=(AC/BC)2
SUY RA TỈ SỐ S(HAB): S(HAC) = (AB/AC)2 =36/64=9/16
Bài 2 :
vì BE vuông góc BD nên BE là đường phân giác ngoài của tam giác ABC.
theo tính chất đường phân giác (ngoài) ta có :
AEEB=ECBCAEEB=ECBC
⇒⇒ CE=AB.BCABCE=AB.BCAB
⇒⇒ CE=AE.23CE=AE.23
⇒⇒ 3CE=(CE+AC).23CE=(CE+AC).2
⇒⇒ 3CE=2CE+2AC3CE=2CE+2AC
⇒⇒ CE=2AC=6(cm)
Bài 1: Giải
Nếu cạnh lớn nhất của tam giác đã cho là cạnh bé nhất của tam giác đồng dạng với nó thì ta có tỉ số đồng dạng đã cho là: (Gọi tạm tam giác có cạnh 12,16,18 m là tgiac 1, tgiac mới là tgiac 2)
k=Δ1Δ2=1218=23k=Δ1Δ2=1218=23
Chu vi của tam giác 1 là:
12+16+18=46(m)12+16+18=46(m)
⇒⇒ Chu vi của tam giác 2 là: 46:23=69(m)46:23=69(m)
Cạnh thứ hai của tam giác đồng dạng (2) là:
16:23=24(m)16:23=24(m)
Cạnh lớn nhất của tam giác đồng dạng (2) đó là:
69−24−18=27(m
Bài 3 tớ k bt lm
a) Xét tam giác ABC và tam giác HBA
B là góc chung
Góc BAC=góc AHB= 90o
=> tam giác ABC đồng dạng tam giác HBA( g.g)
b) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A, ta có
BC2=AC2+AB2
BC2=82+62
BC2=1002=10cm
Xét ta
Mình bổ sung nha:
b) Xét tam giác AHB và tam giác ABC có:
Góc BAC = Góc BHA = 900
Góc B chung
Suy ra tam giác AHB đồng dạng tam giác CAB(g.g)
Suy ra AH/AC = AB/BC
Hay AH/8 = 6/10
Suy ra AH= 8*6/10 = 48/10 = 4,8 (cm)
c) Trong tam giác ABH vuông tại H, nên theo định lý Py- ta go ta có:
AB^2= AH^2+BH^2
Suy ra : BH^2= AB^2 - AH^2= \(\sqrt{6^2-4,8^2}=\sqrt{36-23,04=\sqrt{12,96}}\)
Suy ra BH= 3,6 (cm)
Ta có C ABC / C HBA = AB+AC+BC / AB+AH+BH = (6+8+10 )/ (6+4,8+3,6)=24/14,4=5/3
Vậy C ABC/ C HBA = 5/3
Hình thì bạn tự vẽ nha
a)Xét tam giác ABC và tam giá HBA, có:
Góc B chung
Góc BAC = góc BHA
--> Tam giác ABC ~ Tam giác HBA
b)Xét tam giác AHB và tam giác HCA, có
Góc A - góc H
Góc ABH = Góc AHC
-->tam giác AHB ~ tam giác AHC
-->AH/HB = HC/AH
-->AH.AH = HB.HC
-->AH^2=HB.HC(đpcm)
c)
+) Áp dụng định lý PTG vào tam giác vuông ABC, có :
BC^2=AB^2 + AC^2
<--> 6^2 + 8^2 = 100
--> BC = 10(cm)
+)Vì tam giác ABC ~ Tam giác HBA :
AB/HB = BC/BA = AC/HA
-)AB/HB = BC/BA
= 6/HB =10/6
--> HB = 6.6/10
-->HB = 3,6(cm)
-)BC/BA =AC/HA
=10/6 = 8/HA
--> HA = 6.8/10
--> HA = 4,8 (cm)
d) tính tỉ số diện tích thì bạn ghi tỉ số đồng dạng ra rồi bình phương tỉ số đó lên
là đc tỉ số đồng dạng ạ
xét tam giác ABC có BC2=ab2 + ac2
thay số BC2=62+82
BC2=36+64=100
BC=10(cm)
còn lại mình không bít,xin lỗi
a: ΔHBA\(\sim\)ΔABC vì \(\widehat{B}\) chung; góc AHB=góc CAB=90 độ
ΔHCA\(\sim\)ΔACB vì góc C chung, góc AHC=góc BAC=90 độ
b: \(BC=\sqrt{a^2+b^2}\)
\(BH=\dfrac{AB^2}{BC}=\dfrac{a^2}{\sqrt{a^2+b^2}}\)
\(CH=\dfrac{AC^2}{BC}=\dfrac{b^2}{\sqrt{a^2+b^2}}\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{a\cdot b}{\sqrt{a^2+b^2}}\)