K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2016

câu 1: 

100 cm

 

15 tháng 2 2017

có ai giải được ko ngày mai dự giờ rồi. bài 2

Bài 1:   Cho hình thang ABCD (AB//CD) ,một đường thẳng song song với 2 đáy, cắt các cạnh AD,BC ở M và N sao cho MD = 2MA.a.Tính tỉ số  NB/NCb.Cho AB = 8cm, CD = 17cm.Tính MN?Bài 2: Cho hình thang ABCD(AB//CD).M là trung điểm của CD.Gọi I là giao điểm của AM và BD, gọi K là giao điểm của BM và AC.a.Chứng minh IK // ABb.Đường thẳng IK cắt AD, BC theo thứ tự ở E và F.Chứng minh: EI = IK = KF.Bài 3: Cho tam giác nhọn...
Đọc tiếp

Bài 1:   Cho hình thang ABCD (AB//CD) ,một đường thẳng song song với 2 đáy, cắt các cạnh AD,BC ở M và N sao cho MD = 2MA.

a.Tính tỉ số  NB/NC

b.Cho AB = 8cm, CD = 17cm.Tính MN?

Bài 2: Cho hình thang ABCD(AB//CD).M là trung điểm của CD.Gọi I là giao điểm của AM và BD, gọi K là giao điểm của BM và AC.

a.Chứng minh IK // AB

b.Đường thẳng IK cắt AD, BC theo thứ tự ở E và F.Chứng minh: EI = IK = KF.

Bài 3: Cho tam giác nhọn ABC và các đường cao BD, CE, AM cắt nhau tại H.

a,Chứng minh:  ΔABD = ΔACE

b, Chứng minh: ΔAED ~ ΔACB và tính góc AED biết góc ACB = 48°

c, EH.EC=EA.EB

d, Chứng minh H là giao điểm ba đường phân giác của tam giác EDM

Bài 4:  Cho tam giác ABC vuông ở A, đường cao AH, BC = 20cm, AH = 8cm. Gọi D là hình chiếu của H trên AC, E là hình chiếu của H trên AB.

a.) Chứng minh : AB2 = BH . BC

b) Chứng minh tam giác ADE đồng dạng với tam giác ABC.

c) Tính diện tích tam giác ADE

Bài 5: Cho tam giác ABC vuông ở A, AB = 15cm, AC = 20cm, đường phân giác BD; đường cao AH.  Tính độ dài  BC ;  BH  ;  AH  ; AD?

0
18 tháng 5 2020

c, Theo phần b có , tgiac AHD đồng dạng tgiac CED

=? HD/ED = AD/CD

 Xét tgiac HDE và tgiac ADC, có:

 góc HDE = góc ADC ( 2 góc đối đỉnh)

HD/ED = AD/ CD (cmt)

=> tg HDE đồng dậng tg ADC ( c.g.c)

d, Áp dụng định lý Pytago vào tg ABC , có:

BC^2 = AB^2 + AC^2 = 6^2 + 8^2

=>BC = 10 (cm)

Có : BA^2 = BH. BC

=> BH = 3,6 = HD

=> BD = 2BH = 7,2(cm)

=> DC = BC - BD = 2,8 (cm)

Chứng minh tgiac AHB = tg AHD (c.g.c)

=> AD = AB = 6 (cm)

theo phần b, tg CDE đồng dạng th ADH

=> Dc/DA = DE/DH

=> DE = 1,68

Áp dụng đính lý pytagp vào tg CED

=> DC^2 = EC^2 + De^2

=> EC = 2,24

=> Diện tích tam giác CED = 1/2 . DE .EC = 1,8816 (cm^2)

Bài làm

Mik nghĩ bbạn thiếu đề là AH đường cao, còn đúng hay sai thì mình không chắc vì nếu AH không là đường cao sẽ không làm được bài, 

a) Xét tam giác ABC và tam giác HBA có:

\(\widehat{AHB}=\widehat{BAC}=90^0\)

\(\widehat{ABC}\)chung

=> Tam giác ABC ~ Tam giác HBA ( g - g )

b) Xét tam giác AHD và tam giác CED có:

\(\widehat{AHD}=\widehat{CED}=90^0\)

\(\widehat{HDA}=\widehat{EDC}\)( hai góc đối đỉnh )

=> Tam giác AHD ~ Tam giác CED ( g - g )

=> \(\frac{AH}{EC}=\frac{AD}{DC}\)

\(\Rightarrow AH.CD=AD.EC\)( đpcm )

c) Vì tam giác AHD ~ Tam giác CED ( cmt )

=> \(\frac{HD}{DE}=\frac{AD}{DC}\)

Xét tam giác HDE và tam giác ADC có:

\(\frac{HD}{DE}=\frac{AD}{DC}\)( cmt )

\(\widehat{HDE}=\widehat{ADC}\)( hai góc đối đỉnh )

=> Tam giác HDE ~ tam giác ADC ( g - c - g )

d) Xét tam giác ABC vuông ở A có:

Theo Pytago có:

BC2 = AB2 + AC2 

hay BC2 = 62 + 82 

=> BC2 = 36 + 64

=> BC2 = 100

=> BC = 10 ( cm )

Diện tích tam giác ABC là:

SABC = 1/2 . AB . AC

SABC = 1/2 . AH . BC

=> AB . AC = AH . BC

hay 6 . 8 = AH . 10

=> AH = 4,8 ( cm )

Xét tam giác AHC vuông ở H có:

Theo pytago có:

HC2 = AC2 - AH2 

hay HC2 = 82 - 4,82 

=> HC2 = 64 - 23,04

=> HC = 6,4 ( cm )

Ta có: BH + HD + DC = BC

=> HD + HD + DC = BC

=> 2HD + HC - HD = BC

Hay 2HD + 6,4 - HD = 10

=> HD + 6,4 =10

=> HD = 3,6 ( cm )

Ta có: HD + DC = HC 

hay 3,6 + DC = 6,4

=> DC = 2,8

Vì D đối xứng với B qua H

=> AH là trung trực của DB

=> AB = AD

=> Tam giác ABD cân tại A

=> AB = AD = 6 cm 

vì tam giác AHD ~ tam giác CED ( theo câu b )

=> \(\frac{HD}{DE}=\frac{AH}{EC}=\frac{AD}{DC}\)

hay \(\frac{3,6}{DE}=\frac{4,8}{EC}=\frac{6}{2,8}\)

=> EC = 4,8 . 2,8 : 6 = 2,24 ( cm )

=> DE = 3,6 . 2,24 : 4,8 = 1,68 ( cm )

Diện tích tam giác DEC là:

SDEC = 1/2 . EC . DE = 1/2 . 2,24 . 1,68 = 1,8816 ( cm2 )

e) CHo mình xin nghỉ. 

Câu 1: Cho tam giác ABC vuông tại A ,đường cao AH a) Cho biết HB=9cm,HC=16cm.Tính các độ dài AH,AB=AC b) Chứng minh các hệ thức AH2=HB.HC,AB2=BC.BH Câu 2: Tam giác ABC vuông tại A, đường cao AH, HB=4cm,HC=9cm.Gọi M là trung điểm của BC. Tính các cạnh của tam giác AHM .Câu3: Cho tam giác ABC vuông tại A . Hình vuông MNPQ có M thuộc cạnh AB,N thuộc cạnh AC ,P và Q thuộc cạnh BC . Biết BQ=4cm,CP=9cm. Tính cạnh của...
Đọc tiếp

Câu 1: Cho tam giác ABC vuông tại A ,đường cao AH 

a) Cho biết HB=9cm,HC=16cm.Tính các độ dài AH,AB=AC 

b) Chứng minh các hệ thức AH2=HB.HC,AB2=BC.BH 

Câu 2: Tam giác ABC vuông tại A, đường cao AH, HB=4cm,HC=9cm.Gọi M là trung điểm của BC. Tính các cạnh của tam giác AHM .

Câu3: Cho tam giác ABC vuông tại A . Hình vuông MNPQ có M thuộc cạnh AB,N thuộc cạnh AC ,P và Q thuộc cạnh BC . Biết BQ=4cm,CP=9cm. Tính cạnh của hình vuông. 

Câu 4: Tam giác ABC đường cao AH (H thuộc cạnh BC) có AH=6cm,BH=4cm,HC=9cm. Chứng minh rằng: 

a) Tam giác AHB đồng dạng với tam giác CHA .

b) BAC = 90o 

Câu 5: Cho tam giác ABC, các đường cao BD và CE. Chứng minh rằng : AE.AB=AD.AC 

Câu 6: Cho hình thang ABCD (AB//CD) , M là trung điểm của AD,H là hình chiếu của M ten BC. Chứng minh rằng:Diện tích hình thang bằng tích BC.MH bằng cách vẽ đường cao BK, gọi N là trung điểm của BC và tìm các tam giác đồng dạng 

Câu 7: Cho tam giác nhọn ABC , các đường cao BD và CE cắt nhau ở H . Gọi K là hình chiếu của H trên BC . Chứng minh rằng : 

a) BH.BD=BK.BC

b) CH.CE=CK.CB

c) BH.BD+CH.CE=BC2 

Câu 8: Cho hình bình hành ABCD (A<B) . Gọi E là hình chiếu của C trên AB, K là hình chiếu của C trên AD, H là hình chiếu của B trên AC. Chứng minh rằng : 

a) AB.AE=AC.HC

b) BC. AK=AC.HC

c) AB.AE+AD.AK=AC2 

3
13 tháng 7 2015

sao nhiều quá vậy cậu dăng như này nhìn đã thấy ngán rồi chẳng ai làm đâu

19 tháng 6 2016

nhieu

16 tháng 7 2019

Hình bạn tự vẽ nhé...

a)

Xét tam giác BAH và tam giác ABC , có :

A^ = H^ = 90O

B^ : góc chung

=> tam giác HAB ~ tam giác ACB ( g.g)

c) 

 ADĐL pitago vào tam giác vuông ABC , có :

AB2 + AC2 = BC2

=> 122 + 166 = BC2

=> BC2 = 400

=> BC = 20 cm

Vì tam giác ACB ~ tam giác HAB , nên ta có :

 AH/ACAB/BC

=> AH/16=12/20

=> AH = 9,6 cm.