Cho a =4n+5/2n-1
Tìm số nguyên n để a là số chính phương
Giải gấp hộ mik với ạ mik cần gấp lắm ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(-7n+3⋮n-1\)
\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)
\(\Rightarrow-7n+3+7n-7⋮n-1\)
\(\Rightarrow-4⋮n-1\)
\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)
\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)
b) \(4n+5⋮4-n\)
\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)
\(\Rightarrow4n+5-4n+16⋮4-n\)
\(\Rightarrow21⋮4-n\)
\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)
\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)
c) \(3n+4⋮2n+1\)
\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+8-6n-3+1⋮2n+1\)
\(\Rightarrow5⋮2n+1\)
\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)
d) \(4n+7⋮3n+1\)
\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)
\(\Rightarrow12n+21-12n-4⋮3n+1\)
\(\Rightarrow17⋮3n+1\)
\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)
\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)
a) Ta có: -7n + 3 chia hết cho n - 1
=> (-7n + 3) % (n - 1) = 0
=> -7n + 3 = k(n - 1), với k là một số nguyên
=> -7n + 3 = kn - k => (k - 7)n = k - 3
=> n = (k - 3)/(k - 7),
với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.
b) Ta có: 4n + 5 chia hết cho 4 - n
=> (4n + 5) % (4 - n) = 0
=> 4n + 5 = k(4 - n), với k là một số nguyên
=> 4n + 5 = 4k - kn
=> (4 + k)n = 4k - 5
=> n = (4k - 5)/(4 + k), với 4 + k khác 0
Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.
c) Ta có: 3n + 4 chia hết cho 2n + 1
=> (3n + 4) % (2n + 1) = 0
=> 3n + 4 = k(2n + 1), với k là một số nguyên
=> 3n + 4 = 2kn + k
=> (2k - 3)n = k - 4
=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0
Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.
d) Ta có: 4n + 7 chia hết cho 3n + 1
=> (4n + 7) % (3n + 1) = 0
=> 4n + 7 = k(3n + 1), với k là một số nguyên
=> 4n + 7 = 3kn + k
=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0
Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.
ta có: \(A=\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2.\left(2n+3\right)-5}{2n+3}=2-\frac{5}{2n+3}\)
Để A thuộc Z
=> 5/2n+3 thuộc Z
=> 5 chia hết cho 2n +3
=> 2n+3 thuộc Ư(5)={1;-1;5;-5}
nếu 2n + 3 = 1 => 2n = -2 => n = -1 (Loại)
2n+3 = -1 => 2n=-4 => n = -2 (Loại)
2n+3 = 5 => 2n = 2 => n = 1 (TM)
2n+3 = -5 => 2n = -8 => n = -4 (Loại)
\(\Rightarrow n\ne1\) thì A là phân số ( n thuộc N)
a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)
\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)
\(\Leftrightarrow45n+18=14n+49\)
\(\Leftrightarrow31n=31\)
\(\Leftrightarrow n=1\)
n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)
Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.
\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)
Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)
Ta có bảng:
2n + 7 | 1 | -1 | 31 | -31 |
n | -3 | -4 | 12 | -19 |
KL | TM | TM | TM | TM |
Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)
c
a=b(mod n) là công thức dùng để chỉ a,b có cùng số dư khi chia cho n, gọi là đồng dư thức
Ta có các tính chất cua đồng dư thức và các tính chất sau:
Cho x là số tự nhiên
Nếu x lẻ thì => x^2 =1 (mod 8)
x^2 =-1(mod 5) hoặc x^2=0(mod 5)
Nếu x chẵn thì x^2=-1(mod 5) hoặc x^2 =1(mod 5) hoặc x^2=0(mod 5)
Vì 2a +1 và 3a+1 là số chính phương nên ta đặt
3a+1=m^2
2a+1 =n^2
=> m^2 -n^2 =a (1)
m^2 + n^2 =5a +2 (2)
3n^2 -2m^2=1(rút a ra từ 2 pt rồi cho = nhau) (3)
Từ (2) ta có (m^2 + n^2 )=2(mod 5)
Kết hợp với tính chất ở trên ta => m^2=1(mod 5); n^2=1(mod 5)
=> m^2-n^2 =0(mod 5) hay a chia hết cho 5
từ pt ban đầu => n lẻ =>n^2=1(mod 8)
=> 3n^2=3(mod 8)
=> 3n^2 -1 = 2(mod 8)
=> (3n^2 -1)/2 =1(mod 8)
Từ (3) => m^2 = (3n^2 -1)/2
do đó m^2 = 1(mod 8)
ma n^2=1(mod 8)
=> m^2 - n^2 =0 (mod 8)
=> a chia hết cho 8
Ta có a chia hết cho 8 và 5 và 5,8 nguyên tố cùng nhau nên a chia hết cho 40.Vậy a là bội của 40
a, Ta có : \(\text{n + 5 = (n - 1)+6}\)
Vì \(\text{(n-1) ⋮ n-1}\)
Nên để \(\text{n+5 ⋮ n-1}\)⋮ `n-1`
Thì \(\text{6 ⋮ n-1}\)
\(\Rightarrow\) \(\text{n - 1 ∈ Ư(6)}\)
\(\Rightarrow\) \(\text{n - 1 ∈}\) \(\left\{\text{±1;±2;±3;±6}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{0;-1;-2;-5;2;3;4;7}\right\}\) \(\text{( TM )}\)
\(\text{________________________________________________________}\)
b, Ta có : \(\text{2n-4 = (2n+4)- 8 = 2(n+2) - 8}\)
Vì \(\text{2(n+2) ⋮ n+2}\)
Nên để \(\text{2n-4 ⋮ n+2}\)
Thì \(\text{8 ⋮ n+2}\)
\(\Rightarrow\) \(\text{n + 2 ∈ Ư(8)}\)
\(\Rightarrow\) \(\text{n + 2 ∈}\) \(\left\{\text{±1;±2;±4;±8}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-3;-4;-6;-10;-1;0;2;6}\right\}\) ( TM )
\(\text{_________________________________________________________________ }\)
c, Ta có :\(\text{ 6n + 4 = (6n + 3) +1 = 3(2n+1) + 1}\)
Vì \(\text{3(2n+1) ⋮ 2n+1}\)
Nên để\(\text{ 6n+4 ⋮ 2n+1}\)
Thì \(\text{1 ⋮ 2n+1}\)
\(\Rightarrow\) \(\text{2n + 1 ∈ Ư(1)}\)
\(\Rightarrow\) \(\text{2n + 1 ∈}\) \(\left\{\text{±1}\right\}\)
\(\Rightarrow\) \(\text{2n ∈}\) \(\left\{\text{-2;0}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-1;0}\right\}\) ( TM )
\(\text{_______________________________________}\)
Ta có : \(\text{3 - 2n = -( 2n - 3 ) = -( 2n + 2 ) + 5 = -2( n+1)+5}\)
Vì \(\text{-2(n+1) ⋮ n+1}\)
Nên để \(\text{3-2n ⋮ n+1}\)
Thì\(\text{ 5 ⋮ n + 1}\)
\(\Rightarrow\) \(\text{n + 1 ∈}\) \(\left\{\text{±1;±5}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\text{-2;-6;0;4}\) ( TM )
Mình mẫu đầu với cuối nhé:
a) Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)
\(\Rightarrow3⋮d\)
\(\Rightarrow d\in\left\{1,3\right\}\)
Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)
Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.
e) \(ƯCLN\left(2n+3,3n+5\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)
Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.
g/s 2n+7 chia hết cho n-2
Ta có 2n+7 cia hết n-2
2-2 chia hết n-2 =>2(n-2) chia hết n-2=>2n-4 chia hết cho n-2
do đó 2n+7-(2n+4) chia hết n-2
(=)2n+7-2n-4 chia hết n-2
(=)3 chia hết n-2 => n-2 thuộc Ư(3).............
bn tự lm tiếp nha đến đây chỉ vc lập bả ng gtrị tìm n
ta có : 2n+7/n-2=2(n-2)+11/n-2=2(n-2)/n-2+11/n-2=2+11/n-2
Để 2n+7 chia hết cho n-2 thì 11/n-2 phải có giá trị nguyên
=>n-2 phải là ước của 11
=>n-2={-11;-1;1;11}
Ta có bảng
n-2 | -11 | -1 | 1 | 11 |
n | -9 | 1 | 3 | 13 |
Vậy n={-9;1;3;13}
Ta có 2n + 5 = 2n -1 + 6
2n+5 chia hết cho 2n-1 <=> 2n-1+6 chia hết 2n-1
Mà 2n-1 chia hết 2n-1
=> Để 2n-1+6 chia hết 2n-1 thì 6 chia hết 2n-1
=> 2n-1 thuôc Ư(6) = {1,2,3,6}
TH1: 2n-1 =1 => n=1
TH2: 2n-1 = 2 => n= 3:2 không là số tự nhiên (loại)
TH3: 2n-1 = 3 => n=2
TH4: 2n-1 = 6 => n= 7:2 không là số tự nhiên (loại)
Vậy n có 2 giá trị là 1 và 2
Ta có 2n + 5 = 2n -1 + 6
2n+5 chia hết cho 2n-1 <=> 2n-1+6 chia hết 2n-1
Mà 2n-1 chia hết 2n-1
=> Để 2n-1+6 chia hết 2n-1 thì 6 chia hết 2n-1
=> 2n-1 thuôc Ư(6) = {1,2,3,6}
TH1: 2n-1 =1 => n=1
TH2: 2n-1 = 2 => n= 3:2 không là số tự nhiên (loại)
TH3: 2n-1 = 3 => n=2
TH4: 2n-1 = 6 => n= 7:2 không là số tự nhiên (loại)
Vậy n có 2 giá trị là 1 và 2
\(\dfrac{2n+15}{n+1}\in Z\Rightarrow2n+15⋮n+1\)
\(\Rightarrow2n+15-2\left(n+1\right)⋮n+1\)
\(\Rightarrow13⋮n+1\)
\(\Rightarrow n+1=Ư\left(13\right)\)
\(\Rightarrow n+1=\left\{-13;-1;1;13\right\}\)
\(\Rightarrow n=\left\{-14;-2;0;12\right\}\)
Cách hai: Theo bezout ta có: \(\dfrac{2n+15}{n+1}\) \(\in\) Z ⇔ 2.(-1) + 15 ⋮ n +1
⇔ 13 ⋮ n +1 ⇒ n + 1 \(\in\) { -13; -1; 1; 13} ⇒ n \(\in\) { -14; -2; 0; 12}
\(A=\dfrac{2\left(2n-1\right)+7}{2n-1}=2+\dfrac{7}{2n-1}\Rightarrow2n-1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
mà A là số chình phương nên n = 1
Ai trả lời mik đi ạ mik tick cho