Cho \(\bigtriangleup ABC\) có \(AB=6cm\) ; \(AC=8cm\) ; \(BC=10cm\) .
a) Chứng minh \(\bigtriangleup ABC\) vuông tại \(A\).
b) Tính đường cao \(AH\) của tam giác.
c) Tính \(HB\) ; \(HC\) và \(S_{\bigtriangleup ABC}\) .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tanB = \(\dfrac{AC}{AB}\)
\(\Leftrightarrow\) \(\dfrac{5}{12} = \dfrac{AC}{6}\)
\(\Leftrightarrow\) AC = \(\dfrac{5.6}{12} = 2,5(cm)\)
Áp dụng định lý Py-ta-go vào \(\bigtriangleup{ABC}\) vuông tại A , có
\(BC^2= AB^2 + AC^2\)
\(\Leftrightarrow\) \(BC^2=6^2+2,5^2\)
\(\Leftrightarrow\) \(BC^2 = 36 + \dfrac{25}{4}\)
\(\Leftrightarrow\) \(BC^2 = \dfrac{169}{4}\)
\(\Rightarrow\) \(BC = \dfrac{13}{2} (cm)\)
Xét \(\Delta ABD\)và \(\Delta HBD\)có:
\(\widehat{BAD}=\widehat{BHD}=90^o\left(gt\right)\)
BD là cạnh chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABC}\))
\(\Rightarrow\Delta ABD=\Delta HBD\left(CH-GN\right)\)
a) Xét tam giác ABC và tam giác DMC có :
BC = CM ( GT )
Góc ACB = góc MCD ( 2 góc đối đỉnh (
AC = CD ( GT )
=> tam giác ABC = tam giác DMC ( c - g - c )
b) Theo ý a , ta có : tam giác ABC = tam giác DMC
=> Góc BAD = góc ADM ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong
=> MD // AB ( dấu hiệu )
c) Nghĩ nốt đã
Gợi N là trung điểm của MP
\(\Rightarrow\) \(\bigtriangleup{PMB}\) là tam giác đều
\(\dfrac{DN}{DP} = \dfrac{1}{2} \)
\(\widehat{DNE} = \widehat{DPC} = 150^0 \)
\(\dfrac{NE}{PC} = \dfrac{1}{2} \)
\(\Rightarrow\) \(\bigtriangleup{DNE} \) ~ \(\bigtriangleup{DPC}\) (c.g.c)
Ta có :
\(\widehat{END} = \widehat{CDP} \)
\(\dfrac{DE}{DC}= \dfrac{NE}{PC}= \dfrac{1}{2} \) (1)
Do \(\widehat{NDP} = 60^0 \) \(\Rightarrow\) \(\widehat{EDC} = 60^0\) (2)
Từ (1) và (2) \(\Rightarrow\) \(\widehat{DEC}=90^0\)
Vậy \(\widehat{DEC} = 90^0\)
\(\widehat{EDC}=60^0\)
\(\widehat{ECD} = 30^0\)
a) Ta có : \(AB^2+AC^2=6^2+8^2=100\)
\(BC^2=10^2=100\)
\(\Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\bigtriangleup ABC\) vuông tại \(A\) (đpcm)
b) Từ \(AB\cdot AC=AH\cdot BC\)
\(\Rightarrow6\cdot8=AH\cdot10\)
\(\Rightarrow AH=4,8\)
c) Từ \(AB^2=BC\cdot BH\)
\(\Rightarrow6^2=10\cdot HB\)
\(\Rightarrow HB=3,6\)
Từ \(HB+HC=BC\)
\(\Rightarrow3,6+HC=10\)
\(\Rightarrow HC=6,4\)
\(S_{\bigtriangleup ABC}=\dfrac{1}{2}AB\cdot AC\) .