K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét \(\Delta ABD\)và \(\Delta HBD\)có:

       \(\widehat{BAD}=\widehat{BHD}=90^o\left(gt\right)\)

        BD là cạnh chung

        \(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABC}\))

\(\Rightarrow\Delta ABD=\Delta HBD\left(CH-GN\right)\)

31 tháng 3 2019

Giải : 

A B C D H x E G

a/ Vì \(DH\perp BC\)

        \(Cx\perp BC\)

\(\Rightarrow DH//Cx\)

b/ Xét , có :

\(\widehat{HDE}=\widehat{CED}\text{ (hai góc so le trong của CE//DH)}\)

\(HD=EC\text{ (gt)}\)

\(\widehat{DHC}=\widehat{ECH}\left(=90^0\right)\)

\(\Rightarrow\Delta DHG=\Delta ECG\left(g.c.g\right)\).

c/ Vì \(\Delta DHG=\Delta ECG\left(c.m.t\right)\Rightarrow DG=GC\text{ (hai cạnh tương ứng)}\)

\(\Rightarrow\text{G là trung điểm của đoạn thẳng DE}\).

31 tháng 3 2019

Đề thi mà

a: Xét ΔAHB vuông tại H và ΔAHK vuông tại H có

AH chung

HB=HK

Do đó: ΔAHB=ΔAHK

b: Ta có: HE\(\perp\)AC

AB\(\perp\)AC

Do đó: HE//AB

=>\(\widehat{EHA}=\widehat{HAB}\)

mà \(\widehat{HAB}=\widehat{HAK}\)

nên \(\widehat{EHA}=\widehat{HAK}\)

B C A D K M Q

Xét tam giác ABC có A = 90*

=> BC2 = AB2 + AC2 

=> AC2 = BC2 - AB2

=> AC2 = 102 - 62

=> AC2 = 64

\(\Rightarrow AC^2=\sqrt{64}=8\)

Vậy AC = 8cm

b) K là trung điểm của BC => DK là trung tuyến 

A là trung điểm của BD => CA là trung tuyến

mà DK giao CA tại M

=> M là trọng tam tam giác BDC       ( 1 )
=> CM \(=\frac{2}{3}AC\)

=> CM = \(\frac{16}{3}cm\)

c) Đề bài phải là trung tuyến AC nhá

Trong tam giác vuông trung tuyến ứng với cạnh huyền = \(\frac{1}{2}\) cạnh huyền

=> Q là trung điểm của BC 

=> BQ là trung tuyến của tam giác BDC ( 2 )

Từ ( 1 ) và ( 2 ) => 3 điểm B , M , Q thẳng hàng

5 tháng 3 2019

Gợi ý làm bài :

HS tự vẽ hình, viết GT, KL.

a, \(\triangle ABC\) đều vì có AB = AC và \(\widehat{B}=60^{\text{o}}\).

b, Trong một tam giác đều, 3 đường cao bằng nhau (HS tự chứng minh).

Chiều cao của tam giác đều được tính bằng công thức \(h=a\frac{\sqrt{3}}{2}\).

c, HS tự chứng minh.

Nhận xét : Trọng tâm, trực tâm, tâm đường tròn nội tiếp, tâm đường tròn ngoại tiếp là 4 điểm trùng nhau.

5 tháng 3 2019

Hình vẽ :

A B C H K L