K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2016

=> x^2-3=4

x^2=7

=. x= căn 7 hoặc âm căn 7

12 tháng 11 2016

\(\left(x^2-3\right)^2=16=4^2\)

=>\(x^2-3=4\)hoac \(x^2-3=-4\)

  

11 tháng 9 2023

               Để olm giúp em em nhé!

a,   \(\dfrac{x+2}{7x+42}\) = \(\dfrac{x+2}{7.\left(x+6\right)}\) = \(\dfrac{\left(x+2\right)\left(x-6\right)}{7\left(x-6\right)\left(x+6\right)}\) (đk \(x\ne\) \(\mp\) 6)

 \(\dfrac{-13x}{x^2-36}\) = \(\dfrac{-13x}{\left(x-6\right)\left(x+6\right)}\) = \(\dfrac{-7.13.x}{7.\left(x-6\right).\left(x+6\right)}\) = \(\dfrac{-91x}{7.\left(x-6\right)\left(x+6\right)}\)

 

11 tháng 9 2023

b, \(\dfrac{7}{4x+16}\) = \(\dfrac{7\left(x-4\right)}{4.\left(x+4\right).\left(x-4\right)}\) (đk \(x\ne\) \(\pm\) 4)

     \(\dfrac{15}{x^2-16}\) = \(\dfrac{15.4}{\left(x-4\right)\left(x+4\right).4}\) = \(\dfrac{60}{4.\left(x-4\right).\left(x+4\right)}\)

20 tháng 7 2023

b) \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x-3\right)\left(x+3\right)=8\)

\(\Rightarrow x^3-1-x\left(x^2-9\right)=8\)

\(\Rightarrow x^3-1-x^3+9x=8\)

\(\Rightarrow9x=9\Rightarrow x=1\)

c) \(\left(x^2+2\right)\left(x-4\right)-\left(x+2\right)\left(x^2+4x+4\right)=-16\)

\(\Rightarrow x^3-4x^2+2x-8-\left(x+2\right)\left(x+2\right)^2=-16\)

\(\Rightarrow x^3-4x^2+2x-8-\left(x+2\right)^3=-16\)

\(\Rightarrow x^3-4x^2+2x-8-\left(x^3+6x^2+12x+8\right)=-16\)

\(\Rightarrow x^3-4x^2+2x-8-x^3-6x^2-12x-8=-16\)

\(\Rightarrow-10x^2-10x-16=-16\)

\(\Rightarrow10x^2+10x=0\)

\(\Rightarrow10x\left(x+1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

26 tháng 10 2021

a: \(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)

b: \(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

24 tháng 9 2018

a) Rút gọn được VT = 9x + 7. Từ đó tìm được x = 1.

b) Rút gọn được VT = 2x + 8. Từ đó tìm được x = 7 2 .

29 tháng 10 2023

a) \(\left(2x+3y\right)^2=\left(2x\right)^2+2\cdot2x\cdot3y+\left(3y\right)^2=4x^2+12xy+9y^2\)

b) \(\left(x+\dfrac{1}{4}\right)^2=x^2+2\cdot x\cdot\dfrac{1}{4}+\left(\dfrac{1}{4}\right)^2=x^2+\dfrac{1}{2}x+\dfrac{1}{16}\)

c) \(\left(x^2+\dfrac{2}{5}y\right)\left(x^2-\dfrac{2}{5}y\right)=\left(x^2\right)^2-\left(\dfrac{2}{5}y\right)^2=x^4-\dfrac{4}{25}y^2\)

d) \(\left(2x+y^2\right)^3=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y^2+3\cdot2x\cdot\left(y^2\right)^2+\left(y^2\right)^3=8x^3+12x^2y^2+6xy^4+y^6\)

e) \(\left(3x^2-2y\right)^2=\left(3x^2\right)^2-2\cdot3x^2\cdot2y+\left(2y\right)^2=9x^4-12x^2y+4y^2\)

f) \(\left(x+4\right)\left(x^2-4x+16\right)=x^3+4^3=x^3+64\)

g) \(\left(x^2-\dfrac{1}{3}\right)\cdot\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)=\left(x^2\right)^3-\left(\dfrac{1}{3}\right)^3=x^6-\dfrac{1}{27}\)

4 tháng 2 2022

lớp 8 có pt bậc 2 ak??

4 tháng 2 2022

Có nhưng giải bằng PT tích nhé

31 tháng 8 2021

Đề gì bn

31 tháng 8 2021

sorry mik nhầm

30 tháng 7 2021

1)(x2-4x+16)(x+4)-x(x+1)(x+2)+3x2=0

\(\Rightarrow\)(x3+64)-x(x2+2x+x+2)+3x2=0

\(\Rightarrow\)x3+64-x3-2x2-x2-2x+3x2=0

\(\Rightarrow\)-2x+64=0

\(\Rightarrow\)-2x=-64

\(\Rightarrow\)x=\(\dfrac{-64}{-2}\)

\(\Rightarrow x=32\)

30 tháng 7 2021

2)(8x+2)(1-3x)+(6x-1)(4x-10)=-50

\(\Rightarrow\)8x-24x2+2-6x+24x2-60x-4x+10=50

\(\Rightarrow\)-62x+12=50

\(\Rightarrow\)-62x=50-12

\(\Rightarrow\)-62x=38

\(\Rightarrow\)x=\(-\dfrac{38}{62}=-\dfrac{19}{31}\)

10 tháng 7 2017

a) TXĐ: R

y′ = 6x − 24 x 2  = 6x(1 − 4x)

y' = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

y' > 0 trên khoảng (0; 1/4) , suy ra y đồng biến trên khoảng (0; 1/4)

y' < 0 trên các khoảng ( - ∞ ; 0 ); (14; + ∞ ), suy ra y nghịch biến trên các khoảng ( - ∞ ;0 ); (14; + ∞ )

b) TXĐ: R

y′ = 16 + 4x − 16 x 2  − 4 x 3  = −4(x + 4)( x 2  − 1)

y' = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy hàm số y đã cho đồng biến trên các khoảng ( - ∞ ; -4) và (-1; 1), nghịch biến trên các khoảng (-4; -1) và (1; + ∞ )

c) TXĐ: R

y′ = 3 x 2 − 12x + 9

y' = 0

y' > 0 trên các khoảng ( - ∞ ; 1), (3;  + ∞ ) nên y đồng biến trên các khoảng ( - ∞ ; 1), (3;  + ∞ )

y'< 0 trên khoảng (1; 3) nên y nghịch biến trên khoảng (1; 3)

d) TXĐ: R

y′ = 4 x 3  + 16 = 4x( x 2  + 4)

y' = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

y' > 0 trên khoảng (0;  + ∞ ) ⇒ y đồng biến trên khoảng (0;  + ∞ )

y' < 0 trên khoảng ( - ∞ ; 0) ⇒ y nghịch biến trên khoảng ( - ∞ ; 0)