Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để olm giúp em em nhé!
a, \(\dfrac{x+2}{7x+42}\) = \(\dfrac{x+2}{7.\left(x+6\right)}\) = \(\dfrac{\left(x+2\right)\left(x-6\right)}{7\left(x-6\right)\left(x+6\right)}\) (đk \(x\ne\) \(\mp\) 6)
\(\dfrac{-13x}{x^2-36}\) = \(\dfrac{-13x}{\left(x-6\right)\left(x+6\right)}\) = \(\dfrac{-7.13.x}{7.\left(x-6\right).\left(x+6\right)}\) = \(\dfrac{-91x}{7.\left(x-6\right)\left(x+6\right)}\)
b, \(\dfrac{7}{4x+16}\) = \(\dfrac{7\left(x-4\right)}{4.\left(x+4\right).\left(x-4\right)}\) (đk \(x\ne\) \(\pm\) 4)
\(\dfrac{15}{x^2-16}\) = \(\dfrac{15.4}{\left(x-4\right)\left(x+4\right).4}\) = \(\dfrac{60}{4.\left(x-4\right).\left(x+4\right)}\)
b) \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x-3\right)\left(x+3\right)=8\)
\(\Rightarrow x^3-1-x\left(x^2-9\right)=8\)
\(\Rightarrow x^3-1-x^3+9x=8\)
\(\Rightarrow9x=9\Rightarrow x=1\)
c) \(\left(x^2+2\right)\left(x-4\right)-\left(x+2\right)\left(x^2+4x+4\right)=-16\)
\(\Rightarrow x^3-4x^2+2x-8-\left(x+2\right)\left(x+2\right)^2=-16\)
\(\Rightarrow x^3-4x^2+2x-8-\left(x+2\right)^3=-16\)
\(\Rightarrow x^3-4x^2+2x-8-\left(x^3+6x^2+12x+8\right)=-16\)
\(\Rightarrow x^3-4x^2+2x-8-x^3-6x^2-12x-8=-16\)
\(\Rightarrow-10x^2-10x-16=-16\)
\(\Rightarrow10x^2+10x=0\)
\(\Rightarrow10x\left(x+1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
a: \(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)
b: \(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
a) Rút gọn được VT = 9x + 7. Từ đó tìm được x = 1.
b) Rút gọn được VT = 2x + 8. Từ đó tìm được x = 7 2 .
a) \(\left(2x+3y\right)^2=\left(2x\right)^2+2\cdot2x\cdot3y+\left(3y\right)^2=4x^2+12xy+9y^2\)
b) \(\left(x+\dfrac{1}{4}\right)^2=x^2+2\cdot x\cdot\dfrac{1}{4}+\left(\dfrac{1}{4}\right)^2=x^2+\dfrac{1}{2}x+\dfrac{1}{16}\)
c) \(\left(x^2+\dfrac{2}{5}y\right)\left(x^2-\dfrac{2}{5}y\right)=\left(x^2\right)^2-\left(\dfrac{2}{5}y\right)^2=x^4-\dfrac{4}{25}y^2\)
d) \(\left(2x+y^2\right)^3=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y^2+3\cdot2x\cdot\left(y^2\right)^2+\left(y^2\right)^3=8x^3+12x^2y^2+6xy^4+y^6\)
e) \(\left(3x^2-2y\right)^2=\left(3x^2\right)^2-2\cdot3x^2\cdot2y+\left(2y\right)^2=9x^4-12x^2y+4y^2\)
f) \(\left(x+4\right)\left(x^2-4x+16\right)=x^3+4^3=x^3+64\)
g) \(\left(x^2-\dfrac{1}{3}\right)\cdot\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)=\left(x^2\right)^3-\left(\dfrac{1}{3}\right)^3=x^6-\dfrac{1}{27}\)
1)(x2-4x+16)(x+4)-x(x+1)(x+2)+3x2=0
\(\Rightarrow\)(x3+64)-x(x2+2x+x+2)+3x2=0
\(\Rightarrow\)x3+64-x3-2x2-x2-2x+3x2=0
\(\Rightarrow\)-2x+64=0
\(\Rightarrow\)-2x=-64
\(\Rightarrow\)x=\(\dfrac{-64}{-2}\)
\(\Rightarrow x=32\)
2)(8x+2)(1-3x)+(6x-1)(4x-10)=-50
\(\Rightarrow\)8x-24x2+2-6x+24x2-60x-4x+10=50
\(\Rightarrow\)-62x+12=50
\(\Rightarrow\)-62x=50-12
\(\Rightarrow\)-62x=38
\(\Rightarrow\)x=\(-\dfrac{38}{62}=-\dfrac{19}{31}\)
1 : 8x2+4xy-2ax -ay=4x(2x+y)-a(2x+y)=(2x+y)(4x-a)
2,3 tương tự
`#3107`
`a)`
`(6x - 2)^2 + 4(3x - 1)(2 + y) + (y + 2)^2 - (6x + y)^2`
`= [(6x - 2)^2 - (6x + y)^2] + 4(3x - 1)(2 + y) + (2 + y)^2`
`= (6x - 2 - 6x - y)(6x -2 + 6x + y) + (2 + y)*[ 4(3x - 1) + 2 + y]`
`= (2 - y)(12x + y - 2) + (2 + y)*(12x - 4 + 2 + y)`
`= (2 - y)(12x + y - 2) + (2 + y)*(12x + y - 2)`
`= (12x + y - 2)(2 - y + 2 + y)`
`= (12x + y - 2)*4`
`= 48x + 4y - 8`
`b)`
\(5(2x-1)^2+2(x-1)(x+3)-2(5-2x)^2-2x(7x+12)\)
`= 5(4x^2 - 4x + 1) + 2(x^2 + 2x - 3) - 2(25 - 20x + 4x^2) - 14x^2 - 24x`
`= 20x^2 - 20x + 5 + 2x^2 + 4x - 6 - 50 + 40x - 8x^2 - 14x^2 - 24x`
`= - 51`
`c)`
\(2(5x-1)(x^2-5x+1)+(x^2-5x+1)^2+(5x-1)^2-(x^2-1)(x^2+1)\)
`= [ 2(5x - 1) + x^2 - 5x + 1] * (x^2 - 5x + 1) + (5x - 1)^2 - [ (x^2)^2 - 1]`
`= (10x - 2 + x^2 - 5x + 1) * (x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`
`= (x^2 + 5x - 1)(x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`
`= x^4 - (5x - 1)^2 + (5x - 1)^2 - x^4 + 1`
`= 1`
`d)`
\((x^2+4)^2-(x^2+4)(x^2-4)(x^2+16)-8(x-4)(x+4)\)
`= (x^2 + 4)*[x^2 + 4 - (x^2 - 4)(x^2 + 16)] - 8(x^2 - 16)`
`= (x^2 + 4)(x^4 + 12x^2 - 64) - 8x^2 + 128`
`= x^6 + 16x^4 - 16x^2 - 256 - 8x^2 + 128`
`= x^6 + 16x^4 - 24x^2 - 128`
=> x^2-3=4
x^2=7
=. x= căn 7 hoặc âm căn 7
\(\left(x^2-3\right)^2=16=4^2\)
=>\(x^2-3=4\)hoac \(x^2-3=-4\)