K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2016

Dựng đường cao từ đỉnh C xuống AB cắt AH tại G

=> G là trọng tâm của tam giác ABC (Trong tam giác đều đường cao đồng thời là đường trung tuyến, đường phân giác...)

=> HG=AH/3 mà HM=AH/3 => HG=HM 

Do CG là đường phân giác => ^ACG=^HCG=^ACB/2 = 60/2=30 (1)

Xét tam giác CMG có 

CH vuông góc với AH và HG=HM => tam giác CMG cân tại C

=> ^HCG=^HCM=30 (Trong tam giác cân đường cao đồng thời là đường phân giác) (2)

Từ (1) và (2) => ^ACG+^HCG+^HCM=^ACM=30+30+30=90 => tg ACM là tam giác vuông

b/ Xét tg vuông ACM có

\(MC^2=MH.MA\) (Bình phương 1 cạnh góc vuông = tích cạnh huyền với hình chiếu cạnh góc vuông đó trên cạnh huyền)

\(5^2=\frac{AM}{4}.AM=\left(\frac{AM}{2}\right)^2\Rightarrow\frac{AM}{2}=5\Rightarrow AM=10\)

\(AB^2=AM^2-MC^2=10^2-5^2=75\Rightarrow AB=5\sqrt{3}\)

c/ \(AB=AC=BC=5\sqrt{3}\) còn tính gì nữa?

15 tháng 4 2019

tự vẽ hình nha

a)xét tam giac ACH và tam giac MCH có:

                  AH=HM (gt)

                  góc AHC = góc MHC =90 độ

                   HC chung

 suy ra tam giac ACH=tam giac MCH (c.g.c)

suy ra CA=CM(2 góc tương ứng)

b) ta có:tam giac AHC =tam giac MCH(theo câu a)
    suy ra góc ACH = góc MCH ( 2 góc tương ứng)

  suy ra CB là tia phân giác góc ACM   

     hay góc ACB =góc MCB  (1)

xét tam giac ABC và tam giac MBC có:

               AC=MC ( theo câu a)

         góc ACB = góc MCB (theo (1))

              BC chung

suy ra :tam giac ABC = tam giac MBC (c.g.c)

c,d tự làm.

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại...
Đọc tiếp

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông
2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân
3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại E. CM DE =DB +EC
4. CHO TAM GIÁC ABC VUÔNG TẠI A và góc B =60°. Cx vuông góc với BC, trên tia Cx lấy đoạn CE=CA ( CE, CA CÙNG PHÍA VỚI BC ). KÉO DÀI CB LẤY F : BF =BA. CM TAM GIÁC ABC ĐỀU VÀ 3 ĐIỂM E, A, F THẲNG HÀNG
5. Cho tam giác ABD : góc B=2D, kẻ AH vuông góc với BD  (H thuộc BD ). Trên tia đối của tia BA lấy BE =BH. Đường thẳng EH cắt AD tại F. CM FH=FA =FD
6. Cho tam giác ABC cân tại A, đường cao AH. Trên tia AH lấy điểm D sao cho H là trung điểm của đoạn thẳng AD. Nối CD. CM CD=AB và CB là tia phân giác của góc ACD
7. CHO tam giác ABC cân tại A, đường cao BH. CMR góc BAC =2 CBH
8. Cho tam giác ABC có góc B =60, 2 tia phân giác AD và CE của tam giác cắt nhau tại I. CMR tam giác IDE cân
9. Cho tam giác ABC cân tại A, đường cao AH, HD, HE lần lượt là đường cao của tam giác AHB, AHC. trên tia đối của tia DH, EH lấy điểm M, N: DM=DB,  EN =EH.CMR: a) tam giác AMN và tam giác HMN cân b) góc MAN=2BAC

1

a: Xét ΔCHA vuông tại H và ΔCHM vuông tại H có

CH chung

HA=HM

=>ΔCHA=ΔCHM

=>góc ACH=góc MCH

=>CH là phân giác của góc ACM

b: Xét ΔAHC vuông tại H và ΔMHD vuông tại H có

HA=HM

góc HAC=góc HDM

=>ΔHAC=ΔHMD

=>HC=HD

=>AM là trung trực của CD

16 tháng 12 2016


A B C D E H M

16 tháng 12 2016

Làm tiếp nha:

Xét tứ giác ABEC có 2 đường chéo AE và BC cắt nhau tại trung điểm M của mỗi đường nên ABEC là hình bình hành.

=> \(\hept{\begin{cases}AB=CE\left(1\right)\\ABllCE\end{cases}}\)

a ) xét \(\Delta ABM\)và \(\Delta ECM\)có:

\(\hept{\begin{cases}MA=ME\left(gt\right)\\MB=MC\left(gt\right)\\AB=CE\left(cmt\right)\end{cases}}\)

---> \(\Delta ABM=\Delta ECM\left(c.c.c\right)\)

b) Xét \(\Delta ABD\) có BH là đường cao đồng thời đường trung tuyến nên \(\Delta ABD\) cân tại B.

---> BC là phân giác của ABD

\(\Delta ABD\)cân tại B ---> AB = BD (2)

Từ (1),(2) ---> BD = CE

25 tháng 1 2016

hình như bài này sai đề

 

6 tháng 11 2017

Diễn giải:

- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.

Ví dụ 1:

Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75

Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9

- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.

14 tháng 12 2016

Xét tứ giác ABEC có 2 đường chéo AE và BC cắt nhau tại trung điểm M của mỗi đường nên ABEC là hình bình hành

\(\Rightarrow\begin{cases}AB=CE\left(1\right)\\AB\backslash\backslash CE\end{cases}\)

a,xét ΔABM và ΔECM có:

\(\begin{cases}MA=ME\left(gt\right)\\MB=MC\left(gt\right)\\AB=CE\left(cmt\right)\end{cases}\)

→ΔABM=ΔECM(c.c.c)

b,Xét ΔABD có BH là đường cao đồng thời là đường trung tuyến

nên ΔABD cân tại B

→BC là phân giác của \(\widehat{ABD}\)

ΔABD cân tại B →AB=BD(2)

Từ (1),(2)→BD=CE