Bai 1
Cho tam giác ABC đều đườg cao AH .Trên tia đối của tia HA lấy điểm M sao cho HM=\(\frac{1}{3}\)AH
a, CM: Tan giác ACM vuôg
b,Cho MC=5cm,Tính AB
c, Đuowfg phân giác của góc AMC cắt BC tại E,biết CE=4cm,tính AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự vẽ hình nha
a)xét tam giac ACH và tam giac MCH có:
AH=HM (gt)
góc AHC = góc MHC =90 độ
HC chung
suy ra tam giac ACH=tam giac MCH (c.g.c)
suy ra CA=CM(2 góc tương ứng)
b) ta có:tam giac AHC =tam giac MCH(theo câu a)
suy ra góc ACH = góc MCH ( 2 góc tương ứng)
suy ra CB là tia phân giác góc ACM
hay góc ACB =góc MCB (1)
xét tam giac ABC và tam giac MBC có:
AC=MC ( theo câu a)
góc ACB = góc MCB (theo (1))
BC chung
suy ra :tam giac ABC = tam giac MBC (c.g.c)
c,d tự làm.
a: Xét ΔCHA vuông tại H và ΔCHM vuông tại H có
CH chung
HA=HM
=>ΔCHA=ΔCHM
=>góc ACH=góc MCH
=>CH là phân giác của góc ACM
b: Xét ΔAHC vuông tại H và ΔMHD vuông tại H có
HA=HM
góc HAC=góc HDM
=>ΔHAC=ΔHMD
=>HC=HD
=>AM là trung trực của CD
Làm tiếp nha:
Xét tứ giác ABEC có 2 đường chéo AE và BC cắt nhau tại trung điểm M của mỗi đường nên ABEC là hình bình hành.
=> \(\hept{\begin{cases}AB=CE\left(1\right)\\ABllCE\end{cases}}\)
a ) xét \(\Delta ABM\)và \(\Delta ECM\)có:
\(\hept{\begin{cases}MA=ME\left(gt\right)\\MB=MC\left(gt\right)\\AB=CE\left(cmt\right)\end{cases}}\)
---> \(\Delta ABM=\Delta ECM\left(c.c.c\right)\)
b) Xét \(\Delta ABD\) có BH là đường cao đồng thời đường trung tuyến nên \(\Delta ABD\) cân tại B.
---> BC là phân giác của ABD
\(\Delta ABD\)cân tại B ---> AB = BD (2)
Từ (1),(2) ---> BD = CE
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
Xét tứ giác ABEC có 2 đường chéo AE và BC cắt nhau tại trung điểm M của mỗi đường nên ABEC là hình bình hành
\(\Rightarrow\begin{cases}AB=CE\left(1\right)\\AB\backslash\backslash CE\end{cases}\)
a,xét ΔABM và ΔECM có:
\(\begin{cases}MA=ME\left(gt\right)\\MB=MC\left(gt\right)\\AB=CE\left(cmt\right)\end{cases}\)
→ΔABM=ΔECM(c.c.c)
b,Xét ΔABD có BH là đường cao đồng thời là đường trung tuyến
nên ΔABD cân tại B
→BC là phân giác của \(\widehat{ABD}\)
ΔABD cân tại B →AB=BD(2)
Từ (1),(2)→BD=CE
Dựng đường cao từ đỉnh C xuống AB cắt AH tại G
=> G là trọng tâm của tam giác ABC (Trong tam giác đều đường cao đồng thời là đường trung tuyến, đường phân giác...)
=> HG=AH/3 mà HM=AH/3 => HG=HM
Do CG là đường phân giác => ^ACG=^HCG=^ACB/2 = 60/2=30 (1)
Xét tam giác CMG có
CH vuông góc với AH và HG=HM => tam giác CMG cân tại C
=> ^HCG=^HCM=30 (Trong tam giác cân đường cao đồng thời là đường phân giác) (2)
Từ (1) và (2) => ^ACG+^HCG+^HCM=^ACM=30+30+30=90 => tg ACM là tam giác vuông
b/ Xét tg vuông ACM có
\(MC^2=MH.MA\) (Bình phương 1 cạnh góc vuông = tích cạnh huyền với hình chiếu cạnh góc vuông đó trên cạnh huyền)
\(5^2=\frac{AM}{4}.AM=\left(\frac{AM}{2}\right)^2\Rightarrow\frac{AM}{2}=5\Rightarrow AM=10\)
\(AB^2=AM^2-MC^2=10^2-5^2=75\Rightarrow AB=5\sqrt{3}\)
c/ \(AB=AC=BC=5\sqrt{3}\) còn tính gì nữa?