Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)
a) Xét ΔMAB và ΔMEC có
MA=ME(gt)
ˆAMB=ˆEMCAMB^=EMC^(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔMAB=ΔMEC(c-g-c)
cậu không giải bài giúp tôi thì cũng đừng cmt như thế
a) tam giác ABC vuông tại A có:
AB2 + AC2 = BC2 (định lý py-ta-go)
=> 82 + AC2 = 102
=> AC2 = 102 - 82 = 36
=> AC = 6 (cm)
t i c k nha!!! 5645746775675687890890685674562451234142342334543
a)
áp dụng định lí py-ta-go, ta có:
AC2=BC2-AB2=102-82=36
AC=6
a:
Xét tam giác AHC và tam giác EHC có:
HA=HE(gt)
BA(chung)
CHA=CHE=90*
=> tam giác AHC=EHC(c.g.c)
=> AC=EC
xét tam giác AMC và tam giác DMB có:
MC=MB(gt)
MA=MD(gt)
góic CMA=DMB(đối đỉnh)
=> tam giác AMC= DMB(c.g.c)
=> AC=DB
AC=CE
=> CE=BD
b:
MC=MB(gt)
MA=MD(gt)
CMA=BMD
=> AMC=DMB(c.g.c)