Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
cậu không giải bài giúp tôi thì cũng đừng cmt như thế
![](https://rs.olm.vn/images/avt/0.png?1311)
Làm tiếp nha:
Xét tứ giác ABEC có 2 đường chéo AE và BC cắt nhau tại trung điểm M của mỗi đường nên ABEC là hình bình hành.
=> \(\hept{\begin{cases}AB=CE\left(1\right)\\ABllCE\end{cases}}\)
a ) xét \(\Delta ABM\)và \(\Delta ECM\)có:
\(\hept{\begin{cases}MA=ME\left(gt\right)\\MB=MC\left(gt\right)\\AB=CE\left(cmt\right)\end{cases}}\)
---> \(\Delta ABM=\Delta ECM\left(c.c.c\right)\)
b) Xét \(\Delta ABD\) có BH là đường cao đồng thời đường trung tuyến nên \(\Delta ABD\) cân tại B.
---> BC là phân giác của ABD
\(\Delta ABD\)cân tại B ---> AB = BD (2)
Từ (1),(2) ---> BD = CE
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
![](https://rs.olm.vn/images/avt/0.png?1311)
Cách 1: Giải theo phương pháp bậc tiểu học (của bạn Ác Quỷ)
Ta có
Mà dt(AMN) = 1/4 dt(ABN) = 1/4 . 1/2 dt(ABC) = 1/8 dt(ABC)
dt(DMN) = dt(ABC) - dt(AMN) - dt(BDM) - dt(CDN) = dt(ABC) - 1/8 dt(ABC) - 3/8 dt(ABC) - 1/4 dt(ABC) = 1/4 dt(ABC)
Vậy , suy ra AE/AD = 1/3
Cách 2: Giải theo phương pháp bậc THCS (của bạn Lê Quang Vinh)
DN là đường trung bình của tam giác ABC => DN // AB và DN = 1/2 AB
DN // AB => Hai tam giác EAM và EDN đồng dạng => EA/ED = AM/DN = 1/2 (vì AM = 1/4 AB, DN = 1/2 AB)
=> AE/AD = 1/3
![](https://rs.olm.vn/images/avt/0.png?1311)
A B F E C M H
Cm: a) Xét t/giác ABM và t/giác ECM
có BM = CM (gt)
góc AMB = góc CME (đối đỉnh)
AM = EM (gt)
=> t/giác ABM = t/giác ECM (c.h.c)
b) Ta có: t/giác ABM = t/giác ECM (cmt)
=> AB = EC (1) (hai cạnh tương ứng)
Mà HF = AH (gt)
=> BF = AB (2) (Quan hệ giữa đường xiên và hình chiếu)
Từ (1) và (2) suy ra BF = CE (Đpcm)
c) Ta có: AB < AC (gt)
=> góc ACB < góc ABC (Quan hệ giữa góc và cạnh đối diện)
hay góc ACM < góc ABM (3)
Mà t/giác ABM = t/giác ECM (cm câu a)
=> góc ABM = góc MCE (4) (hai góc tương ứng)
Từ (3) và (4) suy ra góc ACM < MCE (Đpcm)
a) Xét ΔMAB và ΔMEC có
MA=ME(gt)
ˆAMB=ˆEMCAMB^=EMC^(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔMAB=ΔMEC(c-g-c)
Có thể vẽ thêm hình không ạ