K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2015

gọi M,N,P lần lượt là trung điểm các cạnh AB,AC,BC

do đó SAMN=SBMP=SANP=1/4 SABC

theo nguyên lý di-rich-le thì trong chín điểm đề bài cho, có ít nhất 3 điểm nằm trong tam giác AMN,BMP hoặc tam giác ANP

gọi 3 điểm đó là H,I,K

chẳng hạn 3 điểm H,I,K nằm trong tam giác ANP

=> SHIK<SANP=1/4 SABC

vậy sẽ có một tam giác nhỏ hơn 1/4 diện tích tam giác ABC

đúng cho mình cái nha!!!

 

18 tháng 12 2017

Cho mik hỏi cho tam giác ABC,M là chung điểm của AB,N là chung điểm của AC.So SMNBC với SABC

Gọi M,N,P lần lượt là trung điểm các cạnh AB,AC,BC

Do đó diện tích AMN = diện tích BMP = diện tích ANP =  \(\frac{1}{4}\) diện tích ABC

Theo nguyên lý di - rich - le thì trong 9 điểm đề bài cho,ít nhất có 3 điểm nằm trong tam giác AMN,BMP hoặc tam giác ANP

Gọi 3 điểm đó là H,I,K

Chẳng hạn 3 điểm H,I,K nằm trong tam giác ANP

= > diện tích HIK < diện tích ANP = \(\frac{1}{4}\) diện tích tam giác ABC

Vậy sẽ có một tam giác nhỏ hơn \(\frac{1}{4}\) diện tích tam giác ABC

Đáp số : Sẽ có một tam giác nhỏ hơn \(\frac{1}{4}\) diện tích tam giác ABC

16 tháng 5 2016

Sorry bạn na , mk mới lớp 5 chẳng hiểu gì hết 

17 tháng 5 2016

Gọi M ,N ,P lần lượt là trung điểm các cạnh AB ,AC , BC . Do đó \(S_{AMN}=S_{BMP}=S_{ANP}=\frac{1}{4}S_{ABC}\)

Theo nguyên lí di-rich-le thì trong chín điểm đề bài cho, có ít nhất ba điểm nằm trong tam giác AMN,BMP,ANP gọi 3 điểm đó là H , I , K

chẳng hạn 3 điểm H,I,K nằm trong ANP

\(\Rightarrow S_{HIK}< S_{ANP}=\frac{1}{4}S_{ABC}\)

Vậy sẽ có một tâm giác nhỏ hơn 1/4 diện tích tam giác ABC

17 tháng 5 2016

uk

8 tháng 7 2023

\(\dfrac{1}{2}\)SBCD = \(\dfrac{2}{3}\)SADC

Diện tích tam giác BCD bằng: \(\dfrac{2}{3}\)\(\dfrac{1}{2}\) = \(\dfrac{4}{3}\)(diện tích tam giác ADC)

 \(\dfrac{3}{4}\)SABD = \(\dfrac{2}{3}\)SACD

Diện tích ABD bằng: \(\dfrac{2}{3}\)\(\dfrac{3}{4}\) = \(\dfrac{8}{9}\)(diện tích tam giác ADC)

232 cm2 ứng với phân số là:

1 + \(\dfrac{4}{3}\) + \(\dfrac{8}{9}\) = \(\dfrac{29}{9}\) (diện tích tam giác ADC)

Diện tích tam giác ADC là:

232 : \(\dfrac{29}{9}\) = 72 (cm2)

Diện tích tam giác BCD là: 72 \(\times\) \(\dfrac{4}{3}\) = 96 (cm2)

Diện tích tam giác ABD là: 72 \(\times\)\(\dfrac{8}{9}\) = 64 (cm2)

Đáp số: ....

 

 

 

2 tháng 9 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Ta có:  A B 2   +   A C 2   =   6 2   +   4 , 5 2   =   7 , 5 2   =   B C 2

nên tam giác ABC vuông tại A. (đpcm)

Để học tốt Toán 9 | Giải bài tập Toán 9

= >   ∠ B   =   37 ° = >   ∠ C   =   90 °   -   ∠ B   =   90 °   -   37 °   =   53 °

Mặt khác trong tam giác ABC vuông tại A, ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

=> AH = 3,6 cm

b) Gọi khoảng cách từ M đến BC là MK. Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

Ta thấy SMBC = SABC khi MK = AH = 3,6 cm

Do đó để SMBC = SABC thì M phải nằm trên đường thẳng song song và cách BC một khoảng là 3,6 cm (có hai đường thẳng như trên hình).

15 tháng 8 2023

loading...

a, Xét \(\Delta\)ABC có: AB2 + AC2 = 62 + 4,52 = 56,25  (cm2)

                        BC2 = 7,52 = 56,25  (cm2)

AB2 + AC2 = BCvậy tam giác ABC vuông tại A (đpcm) 

SinC = 6 : 7,5  =0,8 ⇒ \(\widehat{C}\) = 53,130 ⇒ \(\widehat{B}\) = 900 - 53,130 = 36,870

b, Dựng hình chữ nhật ABCD, chiều cao AH, DK, và đường thẳng d đi qua D song song với BC  như hình vẽ ta có

SABC = SBDC ⇒ AH = DK 

Lây 1 điểm bất M kỳ di động trên đường thẳng d ta có:

SBDC = SMBC  (vì hai tam giác có chiều cao bằng nhau và chung cạnh đáy BC)

⇒ SABC = SMBC

Kết luận khi M di động trên đường thẳng d thì diện tích tam giác MBC luôn bằng diện tích tam giác ABC