Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Em tham khảo tại link này nhé.
Câu hỏi của truong nhat linh - Toán lớp 7 - Học toán với OnlineMath

Câu 1: (bạn tự vẽ hình nhé)
a) Xét \(\Delta\)BAH và \(\Delta\)CAH :
AHB^ = AHC^ = 90o
AB = AC
ABH^ = ACH^
=> \(\Delta\)BAH = \(\Delta\)CAH (cạnh huyền _ góc nhọn) (2)
=> BH = CH (2 cạnh tương ứng) (1)
Mà BH + CH = BC
<=> 2 * BH = 6
BH = 3 (cm)
ABH^ = ACH^
Áp dụng định lý Py-ta-go vào \(\Delta\)ABH:
BH^2 + AH^2 = AB^2
AH^2 = AB^2 - BH^2 = 5^2 - 3^2 = 25 - 9 = 16 (cm)
\(\Rightarrow AH=\sqrt{16}=4\left(cm\right)\)
b) Từ (1) => AH là đường trung tuyến của \(\Delta\)BAC
=> A, G, H thẳng hàng.
c) Từ (2) => BAH^ = CAH^ hay BAG^ = CAG^
Xét \(\Delta\)BAG và \(\Delta\)CAG:
AB = AC
BAG^ = CAG^
AG chung
=> \(\Delta\)BAG = \(\Delta\)CAG (c.g.c)
=> ABG^ = ACG^ (2 góc tương ứng)
gọi M,N,P lần lượt là trung điểm các cạnh AB,AC,BC
do đó SAMN=SBMP=SANP=1/4 SABC
theo nguyên lý di-rich-le thì trong chín điểm đề bài cho, có ít nhất 3 điểm nằm trong tam giác AMN,BMP hoặc tam giác ANP
gọi 3 điểm đó là H,I,K
chẳng hạn 3 điểm H,I,K nằm trong tam giác ANP
=> SHIK<SANP=1/4 SABC
vậy sẽ có một tam giác nhỏ hơn 1/4 diện tích tam giác ABC
đúng cho mình cái nha!!!
Cho mik hỏi cho tam giác ABC,M là chung điểm của AB,N là chung điểm của AC.So SMNBC với SABC