Cho A = \(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+ .....+\(\frac{1}{100^2}\)
a) CMR :A<\(\frac{3}{4}\)
b ) CMR : A > \(\frac{12}{25}\)
giúp mik vs ah , mik đg cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(A=1-\frac{1}{2^{100}}\)
\(A=\frac{2^{100}-1}{2^{100}}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+..+\frac{1}{2^{100}}\right)\)
\(A=1-\frac{1}{2^{100}}\)
hok tốt!!
Ta có:
\(\left(\frac{a+b}{c+d}\right)^2\)\(=\frac{\left(a+b\right).\left(a+b\right)}{\left(c+d\right).\left(c+d\right)}\)\(=\frac{a.a+b.b}{c.c+d.d}\)\(=\frac{a^2+b^2}{c^2+d^2}\)
\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\).
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=1\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=1\)
\(\Leftrightarrow2+2.\frac{a+b+c}{abc}=1\Leftrightarrow\frac{a+b+c}{abc}=-\frac{1}{2}\Leftrightarrow2\left(a+b+c\right)=-abc\)
có chép nhầm đề không ý nhỉ?
ak hình như mk chép sai đề \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
bn có thể giúp mk đc ko Trà My
\(a.ĐKXĐ:\hept{\begin{cases}1-3x\ne0\\3x+1\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{3}\\...\\x\ge0\end{cases}}}\)
\(b,M=\left(\frac{3x}{1-3x}+\frac{2x}{3x+1}\right):\frac{6x^2+10}{1-6x+9x^2}\)
\(=\left(\frac{3x\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\frac{2x\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}\right).\frac{\left(1-3x\right)^2}{6x^2+10}\)
\(=\left(\frac{3x+9x^2+2x-6x^2}{\left(1-3x\right)\left(1+3x\right)}\right).\frac{\left(1-3x\right)^2}{6x^2+10}\)
\(=\frac{5x+3x^2}{1+3x}.\frac{1-3x}{2\left(3x^2+5\right)}\)
==>Sai đề không mem
\(a.\frac{-5}{9}+\frac{5}{9}:A=\left(-\frac{5}{9}+\frac{5}{9}\right):A=0:A=0\)
\(b.\frac{7}{25}.\frac{11}{13}-\frac{7}{25}.\frac{2}{13}-\frac{8}{25}=\frac{7}{25}.\left(\frac{11}{13}-\frac{2}{13}\right)-\frac{8}{25}=\frac{7}{25}.\frac{9}{13}-\frac{8}{25}=\frac{63}{325}-\frac{8}{25}=\frac{-41}{325}\)
C.Thua
Đúng 100%
Đúng 100%
Đúng 100%
\(\frac{3}{4}-\frac{5}{6}\le\frac{x}{12}< 1-\left(\frac{2}{3}-\frac{1}{4}\right)\)
\(\Leftrightarrow-\frac{1}{12}\le\frac{x}{12}< \frac{7}{12}\)
=> x \(\in\) {-1;0;1;2;3;4;5;6}
\(\frac{3}{4}-\frac{5}{6}\le\frac{x}{12}< 1-\left(\frac{2}{3}-\frac{1}{4}\right)\)
\(\Leftrightarrow\)\(\frac{9-10}{12}\le\frac{x}{12}< 1-\left(\frac{8-3}{12}\right)\)
\(\Leftrightarrow\)\(-\frac{1}{12}\le\frac{x}{12}< \frac{7}{12}\)
\(\Leftrightarrow-1\le x< 7\)
Mà x nguyên
=>x={-1;0;1;2;3;4;5;6}
ta có :
\(\frac{1}{2.3}>\frac{1}{3^2}>\frac{1}{4.3};\frac{1}{3.4}>\frac{1}{4^2}>\frac{1}{4.5}....\)
Tương tự ta sẽ có :
\(\frac{1}{2^2}+\frac{1}{2.3}+.+\frac{1}{99.100}>A>\frac{1}{2^2}+\frac{1}{3.4}+..+\frac{1}{100.101}\)
hay ta có :
\(\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{99}-\frac{1}{100}>A>\frac{1}{2^2}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{100}-\frac{1}{101}\)
hay \(\frac{1}{4}+\frac{1}{2}-\frac{1}{100}>A>\frac{1}{4}+\frac{1}{3}-\frac{1}{101}\)
hay ta có : \(\frac{1}{4}+\frac{1}{2}>A>\frac{1}{4}+\frac{1}{3}-\frac{31}{300}\Leftrightarrow\frac{3}{4}>A>\frac{12}{25}\)
vậy ta có điều phải chứng minh