Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa lại đề nha: abc = 1
\(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\le1\)
\(\Leftrightarrow\left(a+b+1\right)\left(b+c+1\right)+\left(b+c+1\right)\left(c+a+1\right)\)\(+\left(c+a+1\right)\left(a+b+1\right)\)
\(\le\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)+a+b+b+c+1\)\(+\left(b+c\right)\left(c+a\right)+b+c+c+a+1\)
\(+\left(c+a\right)\left(a+b\right)+c+a+a+b+1\)
\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)+\left(a+b\right)\left(b+c\right)+\left(b+c\right)\left(c+a\right)\) \(+\left(c+a\right)\left(a+b\right)+a+b+b+c+c+a+1\)
\(\Leftrightarrow2+2\left(a+b+c\right)\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow2+2\left(a+b+c\right)\le\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(\Leftrightarrow3\le\left(a+b+c\right)\left(ab+bc+ca-2\right)\)
Áp dụng bất đẳng thức Cauchy cho 3 số không âm:\(\left(a+b+c\right)\left(ab+bc+ca-2\right)\ge3.\sqrt[3]{a.b.c}.\left[3.\sqrt[3]{ab.bc.ca}-2\right]=3\)
\(\Rightarrow\)đpcm
Dấu đẳng thức xảy ra \(\Leftrightarrow a=b=c=1\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=4\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)
=>\(2+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)
=>\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)
=>\(\frac{c+a+b}{abc}=1\)
=> a+b+c=abc (đpcm)
Từ \(\left(1\right)\) suy ra : \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)
Do \(\left(2\right)\) nên \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1,\) suy ra \(\frac{a+b+c}{abc}=1\\.\)
Do đó \(a+b+c=abc\)
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)
\(\Rightarrow2+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)
\(\Rightarrow2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=2\)
\(\Rightarrow\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=1\)
\(\Rightarrow\frac{a+b+c}{abc}=1\Rightarrow a+b+c=abc\left(đpcm\right)\)
\(\Rightarrow\frac{a+b+c}{abc}=\frac{1}{9}\Leftrightarrow\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=\frac{2}{9}\)
Lại có \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=1\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=1\)
Vậy 1/a^2+1/b^2+1/c^2=1-2/9=7/9 ( Sê đài )
\(\frac{1}{\frac{1}{a}+\frac{1}{b}}+\frac{1}{\frac{1}{b}+\frac{1}{c}}+\frac{1}{\frac{1}{c}+\frac{1}{a}}\)\(=\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\)
Áp dụng bđt AM-GM cho 3 số thực dương a,b,c ta được:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\left(a+b\right)^2}{4\left(a+b\right)}+\frac{\left(b+c\right)^2}{4\left(b+c\right)}+\frac{\left(c+a\right)^2}{4\left(c+a\right)}\)
\(\Rightarrow\frac{1}{\frac{1}{a}+\frac{1}{b}}+\frac{1}{\frac{1}{b}+\frac{1}{c}}+\frac{1}{\frac{1}{c}+\frac{1}{a}}\le\frac{a+b+c}{2}\left(1\right)\)
Áp dụng bđt Cauchy-Schwarz dạng engel ta có:
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{1}{\frac{1}{a}+\frac{1}{b}}+\frac{1}{\frac{1}{b}+\frac{1}{c}}+\frac{1}{\frac{1}{c}+\frac{1}{a}}\le\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\left(đpcm\right)\)
\(\)
Lần lượt áp dụng bất đẳng thức Cô - si có 3 và 4 số, ta có:
\(\frac{a}{18}+\frac{b}{24}+\frac{2}{ab}\ge3.\sqrt[3]{\frac{a}{18}.\frac{b}{24}.\frac{2}{ab}}=\frac{1}{2}\)
\(\frac{a}{9}+\frac{c}{6}+\frac{2}{ac}\ge3.\sqrt[3]{\frac{a}{9}.\frac{c}{6}.\frac{2}{ac}}=1\)
\(\frac{b}{16}+\frac{c}{8}+\frac{2}{bc}\ge3.\sqrt[3]{\frac{b}{16}.\frac{c}{8}.\frac{2}{bc}}=\frac{3}{4}\)
\(\frac{a}{9}+\frac{b}{12}+\frac{c}{6}+\frac{8}{abc}\ge4.\sqrt[4]{\frac{a}{9}.\frac{b}{12}.\frac{c}{6}.\frac{8}{abc}}=\frac{4}{3}\)
\(\frac{13a}{18}+\frac{13b}{24}\ge2\sqrt{\frac{13a}{18}.\frac{13b}{24}}\ge2\sqrt{\frac{13.13.12}{18.24}}=\frac{13}{3}\)
\(\frac{13c}{24}+\frac{13b}{48}\ge2\sqrt{\frac{13c}{24}.\frac{13b}{48}}\ge2\sqrt{\frac{13.13.8}{24.48}}=\frac{13}{6}\)
Cộng vế với vế ta có:
\(a+b+c+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+\frac{8}{abc}\ge\frac{121}{12}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=1\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=1\)
\(\Leftrightarrow2+2.\frac{a+b+c}{abc}=1\Leftrightarrow\frac{a+b+c}{abc}=-\frac{1}{2}\Leftrightarrow2\left(a+b+c\right)=-abc\)
có chép nhầm đề không ý nhỉ?
ak hình như mk chép sai đề \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
bn có thể giúp mk đc ko Trà My