Tìm a,b nguyên biết: \(2a^2+2b^2+2ab-8a-8b+10=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(a^2+25b^2+17+10b-8a=0\)
\(\Rightarrow a^2-8a+16+25b^2+10b+1=0\)
\(\Rightarrow\left(a-4\right)^2+\left(5b+1\right)^2=0\)
Vì \(\left(a-4\right)^2\ge0\) với mọi a
\(\left(5b+1\right)^2\ge0\) với mọi b
\(\Rightarrow\left(a-4\right)^2+\left(5b+1\right)^2\ge0\) với mọi a,b
Mà \(\left(a-4\right)^2+\left(5b+1\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-4\right)^2=0\\\left(5b+1\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-4=0\\5b+1=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=4\\5b=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-\dfrac{1}{5}\end{matrix}\right.\)
\(B=2a^2+2b^2+2ab-10a-8b+19\)
\(B=\left(a^2+2ab+b^2\right)+\left(a^2-10a+25\right)+\left(b^2-8b+16\right)-22\)
\(B=\left(a+b\right)^2+\left(a-5\right)^2+\left(b-4\right)^2-22\ge22\)
Vậy MIN B=22 <=> a=5 b=4
a, \(\left(a^2+b^2-2ab+2a-2b+1\right)+\left(b^2-2b+1\right)=0\)
=> \(\left(a-b+1\right)^2+\left(b-1\right)^2=0\)
Mà \(\left(a-b+1\right)^2\ge0,\left(b-1\right)^2\ge0\)
=> \(\hept{\begin{cases}a-b+1=0\\b=1\end{cases}\Rightarrow\hept{\begin{cases}a=0\\b=1\end{cases}}}\)
b,Tương tự
\(\left(a-2b+1\right)^2+\left(b-1\right)^2=0\)
=>\(\hept{\begin{cases}a=1\\b=1\end{cases}}\)
\(a\ge2b\Rightarrow\dfrac{a}{b}\ge2\)
\(P=2\left(\dfrac{a}{b}\right)+\left(\dfrac{b}{a}\right)-2=\dfrac{a}{4b}+\dfrac{b}{a}+\dfrac{7}{4}\left(\dfrac{a}{b}\right)-2\ge2\sqrt{\dfrac{ab}{4ab}}+\dfrac{7}{4}.2-2=\dfrac{5}{2}\)
\(P_{min}=\dfrac{5}{2}\) khi \(a=2b\)
\(a^2+b^2=2\Rightarrow\hept{\begin{cases}a^2-2=-b^2\\b^2-2=-a^2\end{cases}}\)
\(M=\left(4a^4-8a^2\right)+\left(4b^4-8b^2\right)+8a^2b^2\)
\(=4a^2\left(a^2-2\right)+4b^2\left(b^2-2\right)+8a^2b^2\)
\(=4a^2\left(-b^2\right)+4b^2\left(-a^2\right)+8a^2b^2\)
\(=-8a^2b^2+8a^2b^2\)
\(=0\)
Huỳnh Chi ơi lúc nãy mình bấm nhầm đây mới là bài thơ
Bây giờ ai đã quên chưa
Mùa hoa phượng nở khi Hè vừa sang
Bâng khuâng dưới ánh nắng vàng
Tặng nhau cánh phượng ai mang đi rồi
Ta có : \(2a^2+2b^2+2ab-8a-8b+10=0\)
\(\Leftrightarrow\left(a^2+2ab+b^2\right)+\left(a^2-8a+16\right)+\left(b^2-8b+16\right)=22\)
\(\Leftrightarrow\left(a+b\right)^2+\left(a-4\right)^2+\left(b-4\right)^2=22\). Dễ thấy \(\left(a+b\right)^2\le22\Rightarrow a+b< \sqrt{22}< \sqrt{16}=4\)
Phân tích : \(22=3^2+3^2+2^2\).
Từ đó chia ra các trường hợp , ta chọn được (a;b) = (1;1) ; (1;2) ; (2;1)