Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(2a^2+2b^2+2ab-8a-8b+10=0\)
\(\Leftrightarrow\left(a^2+2ab+b^2\right)+\left(a^2-8a+16\right)+\left(b^2-8b+16\right)=22\)
\(\Leftrightarrow\left(a+b\right)^2+\left(a-4\right)^2+\left(b-4\right)^2=22\). Dễ thấy \(\left(a+b\right)^2\le22\Rightarrow a+b< \sqrt{22}< \sqrt{16}=4\)
Phân tích : \(22=3^2+3^2+2^2\).
Từ đó chia ra các trường hợp , ta chọn được (a;b) = (1;1) ; (1;2) ; (2;1)
Lời giải:
Áp dụng BĐT Cô-si cho các số dương:
\(a^4+b^2\geq 2\sqrt{a^4b^2}=2a^2b\)
\(\Rightarrow a^4+b^2+2ab^2\geq 2a^2b+2ab^2=2ab(a+b)\)
\(\Rightarrow \frac{1}{a^4+b^2+2ab^2}\leq \frac{1}{2ab(a+b)}\)
Tương tự: \(\frac{1}{b^4+a^2+2a^2b}\leq \frac{1}{2ab(a+b)}\)
Do đó: \(Q\leq \frac{1}{2ab(a+b)}+\frac{1}{2ab(a+b)}=\frac{1}{ab(a+b)}\)
Từ đk đầu tiên \(\frac{1}{a}+\frac{1}{b}=2\Leftrightarrow \frac{a+b}{ab}=2\Rightarrow a+b=2ab\)
\(\Rightarrow Q\leq \frac{1}{2a^2b^2}\)
Theo BĐT Cô-si: \(2=\frac{1}{a}+\frac{1}{b}\geq 2\sqrt{\frac{1}{ab}}\Rightarrow ab\geq 1\)
\(\Rightarrow Q\leq \frac{1}{2(ab)^2}\leq \frac{1}{2.1^2}=\frac{1}{2}\)
Vậy \(Q_{\max}=\frac{1}{2}\Leftrightarrow a=b=1\)
ko phải tìm số nguyên a;b à
j cũng dc nói nói tìm dc là dc -_-