Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left(a^2+2ab+b^2-6a-6b+9\right)+\left(b^2-2b+1\right)+2017\)
\(M=\left(a+b-3\right)^2+\left(b-1\right)^2+2017\ge2017\Rightarrow M_{min}=2017\)
ngonhuminh giảng cho minh cách ghep BP khi nhìn đa thức rất lùng tùng với,
Câu 1:
\(Q=a^2+4b^2-10a\)
\(=a^2-10a+25+4b^2-25\)
\(=\left(a-5\right)^2+4b^2-25\)
\(\left(a-5\right)^2\ge0\)
\(4b^2\ge0\)
\(\Rightarrow\left(a-5\right)^2+4b^2-25\ge-25\)
Dấu ''='' xảy ra khi \(\left[\begin{array}{nghiempt}a-5=0\\b=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a=5\\b=0\end{array}\right.\)
\(MinQ=-25\Leftrightarrow a=5;b=0\)
Câu 2:
Tam giác DAC vuông tại D có:
\(AC^2=CD^2+AD^2\)
\(=CD^2+CD^2\) (ABCD là hình vuông)
\(=2CD^2\)
\(=2\times\left(3\sqrt{2}\right)^2\)
\(=2\times9\times2\)
\(=36\)
\(AC=\sqrt{36}=6\left(cm\right)\)
Câu 3:
\(\frac{1}{a-1}=1\)
\(a-1=1\)
\(a=1+1\)
\(a=2\)
Thay a = 2 vào P, ta có:
\(P=\frac{2-2\times2\times b-b}{2\times2+3\times2\times b-b}\)
\(=\frac{2-4b-b}{4+6b-b}\)
\(=\frac{2-5b}{4+5b}\)
\(a\ge2b\Rightarrow\dfrac{a}{b}\ge2\)
\(P=2\left(\dfrac{a}{b}\right)+\left(\dfrac{b}{a}\right)-2=\dfrac{a}{4b}+\dfrac{b}{a}+\dfrac{7}{4}\left(\dfrac{a}{b}\right)-2\ge2\sqrt{\dfrac{ab}{4ab}}+\dfrac{7}{4}.2-2=\dfrac{5}{2}\)
\(P_{min}=\dfrac{5}{2}\) khi \(a=2b\)
a.
\(F=\dfrac{a}{b+2}\Rightarrow F.b+2F=a\)
\(\Rightarrow2F=a-F.b\)
\(\Rightarrow4F^2=\left(a-F.b\right)^2\le\left(a^2+b^2\right)\left(1^2+F^2\right)=F^2+1\)
\(\Rightarrow3F^2\le1\)
\(\Rightarrow-\dfrac{1}{\sqrt{3}}\le F\le\dfrac{1}{\sqrt{3}}\)
Dấu "=" lần lượt xảy ra tại \(\left(a;b\right)=\left(-\dfrac{\sqrt{3}}{2};-\dfrac{1}{2}\right)\) và \(\left(\dfrac{\sqrt{3}}{2};-\dfrac{1}{2}\right)\)
b. Đặt \(\left\{{}\begin{matrix}a+b=x\\a-2b=y\end{matrix}\right.\) quay về câu a
a2-2ab+b2+2b-2a
=(a2-2ab+b2)+(2b-2a)
=(a-b)2+2(b-a)
=(a-b)2-2(a-b)
=(a-b)(a-b-2)
a + b + 2a2 + 2b2 ≥ \(2ab+2a\sqrt{b}+2b\sqrt{a}\)
⇔ a + b + 2a2 + 2b2 - \(2ab-2a\sqrt{b}-2b\sqrt{a}\) ≥ 0
⇔ a2 - 2ab + b2 + a2 - 2a\(\sqrt{b}+b+b^2-2b\sqrt{a}+a\) ≥ 0
⇔ ( a - b)2 + ( a - \(\sqrt{b}\) )2 + ( b - \(\sqrt{a}\))2 ≥ 0 ( Luôn đúng )
1, hiển nhiên a+b>0
có a^2+2ab+2b^2-2b=8=>(a+b)^2=8-(b^2-2b)=9-(b-1)^2 </ 9 => a+b </ 3
\(B=2a^2+2b^2+2ab-10a-8b+19\)
\(B=\left(a^2+2ab+b^2\right)+\left(a^2-10a+25\right)+\left(b^2-8b+16\right)-22\)
\(B=\left(a+b\right)^2+\left(a-5\right)^2+\left(b-4\right)^2-22\ge22\)
Vậy MIN B=22 <=> a=5 b=4