Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tất cả các câu này đều có thể chứng minh bằng phép biến đổi tương đương:
a.
\(\Leftrightarrow a^{10}+b^{10}+a^4b^6+a^6b^4\le2a^{10}+2b^{10}\)
\(\Leftrightarrow a^{10}-a^6b^4+b^{10}-a^4b^6\ge0\)
\(\Leftrightarrow a^6\left(a^4-b^4\right)-b^6\left(a^4-b^4\right)\ge0\)
\(\Leftrightarrow\left(a^6-b^6\right)\left(a^4-b^4\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\left(a^2-b^2\right)\left(a^2+b^2\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^2+b^2\right)\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
b.
\(\Leftrightarrow\left(\dfrac{a^2}{4}+b^2+c^2-ab+ac-2bc\right)+b^2-2b+1+c^2\ge0\)
\(\Leftrightarrow\left(\dfrac{a}{2}-b+c\right)^2+\left(b-1\right)^2+c^2\ge0\) (luôn đúng)
c.
\(\Leftrightarrow a^2+4b^2+4c^2-4ab-8bc+4ac\ge0\)
\(\Leftrightarrow\left(a-2b+2c\right)^2\ge0\) (luôn đúng)
d.
\(\Leftrightarrow4a^4-8a^3+4a^2+a^2-2a+1\ge0\)
\(\Leftrightarrow\left(2a^2-2a\right)^2+\left(a-1\right)^2\ge0\) (luôn đúng)
=> (8a+b-6c+d)-(3a+2b-c-d)-(4a+2b-c+2d)-(4a-2b-3c+d)=4-3-2-1
<=>8a+b-6c+d-3a-2b+c+d-2a-2b+c-2d-4a+2b+3c-d=-2
<=>(8a-3a-2a-4a)+(b-2b-2b+2b)-(6c-c-c-3c)+(d+d-2d-d)=-2
-a-b-c-d=-2
-(a+b+c+d)=-2
=>a+b+c+d=2
Vậy a+b+c+d=2
Ta có các phương trình: 3a+2b-c-d=1 (1)
2a+2b-c+2d=2 (2)
4a-2b-3c+d=3 (3)
8a+b-6c+d=4 (4)
Cộng phương trình (1) , (2) và (3) ta được:
(3a+2b-c-d)+( 2a+2b-c+2d)+(4a-2b-3c+d)=1+2+3
<=> 9a+2b-5c+2d=6 (5)
Lấy phương trình (5) trừ phương trình (4) ta được:
( 9a+2b-5c+2d)-(8a+b-6c+d)=6-4
<=> a+b+c+d=2
Vậy a+b+c+d=2
v
a) \(a^2+25b^2+17+10b-8a=0\)
\(\Rightarrow a^2-8a+16+25b^2+10b+1=0\)
\(\Rightarrow\left(a-4\right)^2+\left(5b+1\right)^2=0\)
Vì \(\left(a-4\right)^2\ge0\) với mọi a
\(\left(5b+1\right)^2\ge0\) với mọi b
\(\Rightarrow\left(a-4\right)^2+\left(5b+1\right)^2\ge0\) với mọi a,b
Mà \(\left(a-4\right)^2+\left(5b+1\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-4\right)^2=0\\\left(5b+1\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-4=0\\5b+1=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=4\\5b=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-\dfrac{1}{5}\end{matrix}\right.\)
a)
`a<b`
`<=>3a<3b`
`<=>3a-5<3b-5`
b)
`a<b`
`<=>-8a> -8b`
`<=>-8a-3> -8b-3`
c)
`a<b`
`<=>4a<4b`
`<=>4a+9<4b+9`
mà `4a-7<4a+9`
`<=>4a-7<4b+9`
\(a^2+b^2=2\Rightarrow\hept{\begin{cases}a^2-2=-b^2\\b^2-2=-a^2\end{cases}}\)
\(M=\left(4a^4-8a^2\right)+\left(4b^4-8b^2\right)+8a^2b^2\)
\(=4a^2\left(a^2-2\right)+4b^2\left(b^2-2\right)+8a^2b^2\)
\(=4a^2\left(-b^2\right)+4b^2\left(-a^2\right)+8a^2b^2\)
\(=-8a^2b^2+8a^2b^2\)
\(=0\)
Huỳnh Chi ơi lúc nãy mình bấm nhầm đây mới là bài thơ
Bây giờ ai đã quên chưa
Mùa hoa phượng nở khi Hè vừa sang
Bâng khuâng dưới ánh nắng vàng
Tặng nhau cánh phượng ai mang đi rồi