Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra , ta có :
\(3a+2b-c-d=1\)
\(2a+2b-c-2d=2\)
\(4a-2b-3c+d=3\)
\(8a+b-6c+d=4\)(1)
Cộng từng vế của 3 biểu thức đầu lại ta đk \(3a+2b-c-d+2a+2b-c-2d+4a-2b-3c+d=1+2+3\)
\(\Leftrightarrow9a+2b-5c+2d=6\)(2)
Trừ phương trình (2) cho phương trình (1) theo từng vế ta đk
\(9a+2b-5c+2d-8a-b+6c-d=6-4=2\)
\(\Leftrightarrow a+b+c+d=2\)
Vậy \(a+b+c+d=2\)
Chúc bạn học tốt =))
=> (8a+b-6c+d)-(3a+2b-c-d)-(4a+2b-c+2d)-(4a-2b-3c+d)=4-3-2-1
<=>8a+b-6c+d-3a-2b+c+d-2a-2b+c-2d-4a+2b+3c-d=-2
<=>(8a-3a-2a-4a)+(b-2b-2b+2b)-(6c-c-c-3c)+(d+d-2d-d)=-2
-a-b-c-d=-2
-(a+b+c+d)=-2
=>a+b+c+d=2
Vậy a+b+c+d=2
Ta có:
3a+2b-c-d=1 (1)
2a+2b-c+2d=2 (2)
4a-2b-2c+d=3 (3)
8a+b-6c+d=4 (4)
(1)+(2)+(3)-(4) vế theo vế ta được:
a+b+c+d=1+2+3-4=2
Vâp a+b+c+d=2
Ta có các phương trình: 3a+2b-c-d=1 (1)
2a+2b-c+2d=2 (2)
4a-2b-3c+d=3 (3)
8a+b-6c+d=4 (4)
Cộng phương trình (1) , (2) và (3) ta được:
(3a+2b-c-d)+( 2a+2b-c+2d)+(4a-2b-3c+d)=1+2+3
<=> 9a+2b-5c+2d=6 (5)
Lấy phương trình (5) trừ phương trình (4) ta được:
( 9a+2b-5c+2d)-(8a+b-6c+d)=6-4
<=> a+b+c+d=2
Vậy a+b+c+d=2
v