K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2016

\(A=\frac{10^{2016}+4}{21}-\frac{10^{2017}+5}{63}\)

\(A=\frac{3x\left(10^{2016}+4\right)}{63}-\frac{10^{2017}+5}{63}\)

\(A=\frac{3x10^{2016}+12}{63}-\frac{10^{2017}+5}{63}\)

\(A=\frac{\left(3x10^{2016}+12\right)-\left(10^{2017}+5\right)}{63}\)

\(A=\frac{3x10^{2016}+12-10^{2017}-5}{63}\)

\(A=\frac{\left(3x10^{2016}-10^{2017}\right)+7}{63}\)

\(A=\frac{10^{2016}x\left(3-10\right)+7}{63}\)

\(A=\frac{10^{2016}x\left(-7\right)+7}{63}\)

\(A=\frac{-10^{2016}x7+7}{63}\)

\(A=\frac{7x\left(-10^{2016}+1\right)}{63}\)

\(A=\frac{7x\left(10^{2016}-1\right)}{63}\)

Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9 mà 102016 có tổng các chữ số là 1

=> 102016 - 1 chia hết cho 9

=> 7 x (102016 - 1) chia hết cho 63

=> 7 x (102016 - 1) / 63 nguyên

=> A nguyên

Chứng tỏ A nguyên


 

23 tháng 6 2016

Mình chịu dù mình cũng học lớp 6

\(A=\dfrac{3\cdot10^{2016}+12-10^{2017}-5}{63}\)

\(A=\dfrac{10^{2016}\cdot\left(-7\right)+7}{63}=\dfrac{\left(-7\right)\cdot\left(10^{2016}-1\right)}{63}\)

\(=\dfrac{\left(10-1\right)\cdot B}{-9}=-B\) là số tự nhiên

31 tháng 5 2019

\(A=\frac{10^{2016}+4}{21}-\frac{10^{2017}+5}{63}\)\(=\frac{3.10^{2016}+12-10.10^{2016}-5}{63}\)

                                                              \(=\frac{-7.10^{2016}+7}{63}\)

                                                              \(=\frac{1-10^{2016}}{9}\text{⋮}9\)

Vậy A là 1 số nguyên

~Hok tốt nhé~

27 tháng 4 2018

Bài 1,2 dễ nha

Bài 3 : \(A=\frac{10^{2016}+9}{21}-\frac{10^{2017}+5}{63}=\frac{3\cdot10^{2016}+12-10\cdot10^{2016}-5}{63}\)

                                                                     \(=\frac{-7\cdot10^{2016}+7}{63}\)

                                                                       \(=\frac{1-10^{2016}}{9}⋮9\)

=> A là 1 số nguyên

Bài 4 :

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}< 1\)

27 tháng 4 2018

Cmr ơn bạn nhiều

21 tháng 10 2017

Đặt \(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{20}}\)

\(\Rightarrow2A=2+1+\frac{1}{2}+...+\frac{1}{2^9}\)

\(\Rightarrow2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^9}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)

\(\Rightarrow A=2-\frac{1}{2^{10}}\)

21 tháng 10 2017

đặt \(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\)

\(2A=2+1+\frac{1}{2}+...+\frac{1}{2^9}\)

\(2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^9}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)

\(A=2-\frac{1}{2^{10}}\)

5 tháng 10 2020

a) Với \(x\ge0\)và \(x\ne1\)ta có:

\(P=\frac{10\sqrt{x}}{x+3\sqrt{x}-4}-\frac{2\sqrt{x}-3}{\sqrt{x}+4}+\frac{\sqrt{x}+1}{1-\sqrt{x}}\)

\(=\frac{10\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}-\frac{2\sqrt{x}-3}{\sqrt{x}+4}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\frac{10\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}-\frac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{10\sqrt{x}-\left(2\sqrt{x}-3\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{10\sqrt{x}-\left(2x-5\sqrt{x}+3\right)-\left(x+5\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{10\sqrt{x}-2x+5\sqrt{x}-3-x-5\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{-3x+10\sqrt{x}-7}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{-\left(3x-10\sqrt{x}+7\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{-\left(\sqrt{x}-1\right)\left(3\sqrt{x}-7\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{-3\sqrt{x}+7}{\sqrt{x}+4}\)

b) \(P=\frac{-3\sqrt{x}+7}{\sqrt{x}+4}=\frac{-3\sqrt{x}-12+19}{\sqrt{x}+4}=\frac{-3\left(\sqrt{x}+4\right)+19}{\sqrt{x}+4}=-3+\frac{19}{\sqrt{x}+4}\)

Vì \(x\ge0\)\(x\ne1\)\(\Rightarrow\sqrt{x}+4\ge4\)

\(\Rightarrow\frac{19}{\sqrt{x}+4}\le\frac{19}{4}\)\(\Rightarrow P\le-3+\frac{19}{4}=\frac{7}{4}\)

Dấu " = " xảy ra \(\Leftrightarrow x=0\)( thỏa mãn )

Vậy \(maxP=\frac{7}{4}\)\(\Leftrightarrow x=0\)