Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{10^{2016}+4}{21}-\frac{10^{2017}+5}{63}\)
\(A=\frac{3x\left(10^{2016}+4\right)}{63}-\frac{10^{2017}+5}{63}\)
\(A=\frac{3x10^{2016}+12}{63}-\frac{10^{2017}+5}{63}\)
\(A=\frac{\left(3x10^{2016}+12\right)-\left(10^{2017}+5\right)}{63}\)
\(A=\frac{3x10^{2016}+12-10^{2017}-5}{63}\)
\(A=\frac{\left(3x10^{2016}-10^{2017}\right)+7}{63}\)
\(A=\frac{10^{2016}x\left(3-10\right)+7}{63}\)
\(A=\frac{10^{2016}x\left(-7\right)+7}{63}\)
\(A=\frac{-10^{2016}x7+7}{63}\)
\(A=\frac{7x\left(-10^{2016}+1\right)}{63}\)
\(A=\frac{7x\left(10^{2016}-1\right)}{63}\)
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9 mà 102016 có tổng các chữ số là 1
=> 102016 - 1 chia hết cho 9
=> 7 x (102016 - 1) chia hết cho 63
=> 7 x (102016 - 1) / 63 nguyên
=> A nguyên
Chứng tỏ A nguyên
Để A nguyên mà 32018 + 1 > 5 thì phải cm 32018 + 1\(⋮\)5
Bài giải
Ta có: A = \(\frac{3^{2018}+1}{5}\)
Xét chữ số tận cùng của 32018:
Ta có:
32018 = 34.504 + 2 = 34.504.32 = (...1).32 = (...1).9 = (...9)
Xét 32018 + 1:
32018 + 1 = (...9) + 1 = (...0)
Vì 32018 + 1 có chữ số tận cùng là 0
Nên 32018 + 1 \(⋮\)5
Suy ra A thuộc Z
=> Đpcm
Bài 1,2 dễ nha
Bài 3 : \(A=\frac{10^{2016}+9}{21}-\frac{10^{2017}+5}{63}=\frac{3\cdot10^{2016}+12-10\cdot10^{2016}-5}{63}\)
\(=\frac{-7\cdot10^{2016}+7}{63}\)
\(=\frac{1-10^{2016}}{9}⋮9\)
=> A là 1 số nguyên
Bài 4 :
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}< 1\)