K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2019

\(A=\frac{10^{2016}+4}{21}-\frac{10^{2017}+5}{63}\)\(=\frac{3.10^{2016}+12-10.10^{2016}-5}{63}\)

                                                              \(=\frac{-7.10^{2016}+7}{63}\)

                                                              \(=\frac{1-10^{2016}}{9}\text{⋮}9\)

Vậy A là 1 số nguyên

~Hok tốt nhé~

22 tháng 6 2016

\(A=\frac{10^{2016}+4}{21}-\frac{10^{2017}+5}{63}\)

\(A=\frac{3x\left(10^{2016}+4\right)}{63}-\frac{10^{2017}+5}{63}\)

\(A=\frac{3x10^{2016}+12}{63}-\frac{10^{2017}+5}{63}\)

\(A=\frac{\left(3x10^{2016}+12\right)-\left(10^{2017}+5\right)}{63}\)

\(A=\frac{3x10^{2016}+12-10^{2017}-5}{63}\)

\(A=\frac{\left(3x10^{2016}-10^{2017}\right)+7}{63}\)

\(A=\frac{10^{2016}x\left(3-10\right)+7}{63}\)

\(A=\frac{10^{2016}x\left(-7\right)+7}{63}\)

\(A=\frac{-10^{2016}x7+7}{63}\)

\(A=\frac{7x\left(-10^{2016}+1\right)}{63}\)

\(A=\frac{7x\left(10^{2016}-1\right)}{63}\)

Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9 mà 102016 có tổng các chữ số là 1

=> 102016 - 1 chia hết cho 9

=> 7 x (102016 - 1) chia hết cho 63

=> 7 x (102016 - 1) / 63 nguyên

=> A nguyên

Chứng tỏ A nguyên


 

23 tháng 6 2016

Mình chịu dù mình cũng học lớp 6

12 tháng 3 2020

Để A nguyên mà 32018 + 1 > 5 thì phải cm 32018 + 1\(⋮\)5

Bài giải

Ta có: A = \(\frac{3^{2018}+1}{5}\)

Xét chữ số tận cùng của 32018:

Ta có:

32018 = 34.504 + 2 = 34.504.32 = (...1).32 = (...1).9 = (...9)

Xét 32018 + 1:

32018 + 1 = (...9) + 1 = (...0)

Vì 32018 + 1 có chữ số tận cùng là 0

Nên 32018 + 1 \(⋮\)5

Suy ra A thuộc Z

=> Đpcm

15 tháng 3 2020

cho\(\frac{3}{1.3}\)+\(\frac{3}{3.5}\)+\(\frac{3}{5.7}\)+...+\(\frac{3}{49.51}\)hãy tính giá trị biểu thức

27 tháng 4 2018

Bài 1,2 dễ nha

Bài 3 : \(A=\frac{10^{2016}+9}{21}-\frac{10^{2017}+5}{63}=\frac{3\cdot10^{2016}+12-10\cdot10^{2016}-5}{63}\)

                                                                     \(=\frac{-7\cdot10^{2016}+7}{63}\)

                                                                       \(=\frac{1-10^{2016}}{9}⋮9\)

=> A là 1 số nguyên

Bài 4 :

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}< 1\)

27 tháng 4 2018

Cmr ơn bạn nhiều