Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A nguyên mà 32018 + 1 > 5 thì phải cm 32018 + 1\(⋮\)5
Bài giải
Ta có: A = \(\frac{3^{2018}+1}{5}\)
Xét chữ số tận cùng của 32018:
Ta có:
32018 = 34.504 + 2 = 34.504.32 = (...1).32 = (...1).9 = (...9)
Xét 32018 + 1:
32018 + 1 = (...9) + 1 = (...0)
Vì 32018 + 1 có chữ số tận cùng là 0
Nên 32018 + 1 \(⋮\)5
Suy ra A thuộc Z
=> Đpcm
A) A = \(\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}=\frac{a^2\left(a+1\right)+\left(a+1\right)+\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a-1}=1\)
b) Gọi Q = ƯCLN ( a2 + a - 1; a2 + a + 1 )
a2 + a - 1 chia hết cho Q
a2 + a + 1 chia hết cho Q
\(\Rightarrow\)( a2 + a + 1 ) - ( a2 + a - 1 ) chia hết cho Q \(\Rightarrow\)2 chia hết cho Q
\(\Rightarrow\)Q chỉ có thể bằng 1 hoặc 2
Ta thấy : a2 + a - 1 = a ( a + 1 ) - 1. Với số nguyên a, ta có :
a ( a + 1 ) là tích của 2 STN liên tiếp, nên : a ( a + 1 ) chia hết cho 2
\(\Rightarrow\)a ( a + 1 ) - 1 là số lẻ
Vậy : a2 + a - 1 là số lẻ
Vậy, d = 1 ( đpcm )
a) \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
b) \(A=\frac{a\left(a+1\right)-1}{a\left(a+1\right)+1}\)
Với \(a\)nguyên thì \(a\left(a+1\right)\)là tích hai số nguyên liên tiếp nên là số chẵn, do đó \(a\left(a+1\right)-1,a\left(a+1\right)+1\)là hai số lẻ liên tiếp. Do đó \(A\)là phân số tối giản.