K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2022

\(A = n 3 + ( n + 1 ) 3 + ( n + 2 ) 3\)

\(= n 3 + n 3 + 3 n 2 + 3 n + 1 + n 3 + 6 n 2 + 12 n + 8\)

\(= 3 n 3 + 9 n 2 + 15 n + 9\)

\(= 3 n 2 ( n + 1 ) + 6 n ( n + 1 ) + 9 ( n + 1 )\)

\(= 3 ( n + 1 ) ( n 2 + 2 n + 3 )\)

\(= 3 ( n + 1 ) [ n ( n + 2 ) + 3 ]= 3 ( n + 1 ) [ n ( n + 2 ) + 3 ]\)

\(= 3 n ( n + 1 ) ( n + 2 ) + 9 ( n + 1 )\)

Do \(n , n + 1 , n + 2 \) là 3 số tự nhiên liên tiếp

\(⇒ 3 n ( n + 1 ) ( n + 2 ) ⋮ 9\)

\(⇒ A = 3 n ( n + 1 ) ( n + 2 ) + 9 ( n + 1 ) ⋮ 9 ( đ p c m )\)

P/s : Bài này bạn có thể sử dụng phương pháp quy nạp

làm như vậy sẽ nhanh hơn

tíc cho tui 

25 tháng 2 2022

Xét hằng đẳng thức sau:
x^3 + y^3 + z^3 - 3xyz
= (x + y)^3 - 3xy(x + y) + z^3 - 3xyz
= [(x + y)^3 + z^3] - 3xy(x + y + z)
= (x + y + z)[(x + y)^2 - z(x + y) + z^2) - 3xy(x + y + z)
= (x + y + z)(x^2 + y^2 + z^2 + 2xy - xz - yz) - 3xy(x + y + z)
= (x + y + z)(x^2 + y^2 + z^2 - xy - yz - xz)
---> x^3 + y^3 + z^3 = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - xz) + 3xyz

Áp dụng hằng đẳng thức trên, ta có:
n^3 + (n + 1)^3 + (n + 2)^3
= (n + n + 1 + n + 2)[ n^2 + (n + 1)^2 + (n + 2)^2 -n(n + 1) - (n + 1)(n + 2) - n(n + 2)] - 3n(n + 1)(n + 2)
= (3n + 3)(n^2 + n^2 + 2n + 1 + n^2 + 4n + 4 - n^2 - n - n^2 - 3n - 2 - n^2 - 2n) - 3n(n + 1)(n + 2)
= 9(n + 1) - 3n(n + 1)(n + 2)
Vì n(n + 1)(n + 2) là tích 3 số nguyên liên tiếp nên chia hết 6
--> 3n(n + 1)(n + 2) chia hết 3.6 = 18 chia hết 9
--> 9(n + 1) - 3n(n + 1)(n + 2) chia hết 9
--> n^3 + (n + 1)^3 + (n + 2)^3 chia hết cho 9

30 tháng 12 2021

ta có : n chia hết cho 3

=> n^3 = n.n.n

     n^2 = n.n
Mà n chia hết cho 3
=> n^3 chia hết cho 9 ; n^2 chia hết cho 9
Mà 3 không chia hết cho 9
=> n^3 + n^2 + 3 không chia hết cho 9

15 tháng 12 2018

1. Xét n=1
VT = 12 = 1
VP = \(\dfrac{n.\left(4n^2-1\right)}{3}=\dfrac{1.\left(4.1-1\right)}{3}=1\)
=> VT = VP
=> Mệnh đề đúng.
+) Giả sử với n = k , mệnh đề đúng hay: \(1^2+3^2+5^2+...+\left(2k-1\right)^2=\dfrac{k.\left(4k^2-1\right)}{3}\)+) Ta phải chứng minh với n = k + 1, mệnh đề cũng đúng, tức là: \(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{\left(k+1\right).\left(4.\left(k+1\right)^2-1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(1\right)\)
+) Thật vậy, với n = k + 1, theo giả thiết quy nạp, ta có:
\(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{k.\left(4.k^2-1\right)}{3}+\left(2k+1\right)^2\\ =\dfrac{k.\left(4k^2-1\right)+3.\left(2k+1\right)^2}{3}=\dfrac{4k^3-k+12k^2+12k+3}{3}\\ =\dfrac{\left(k+1\right)\left(2k+3\right)\left(2k+1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(2\right)\)+) Từ (1) và (2) => Điều phải chứng minh

15 tháng 12 2018

2. +) Xét n = 1
\(< =>4^1+15.1-1=18⋮9\)
=> với n=1 , mệnh đề đúng.
+) Giả sử với n=k , mệnh đề đúng, tức là: \(4^k+15k-1⋮9\)
+) Ta phải chứng minh với n = k + 1 mệnh đề cũng đúng, tức là: \(4^{k+1}+15\left(k+1\right)-1⋮9\)
Thật vậy: với n = k + 1, theo giả thiết quy nạp, ta có:
\(4^{k+1}+15\left(k+1\right)-1=4.4^k+15k+15-1\\ =4.4^k+4.15k-4-3.15k+18=4.\left(4^k+15k-1\right)-\left(45k-18\right)⋮9\)=> Điều phải chứng minh.

27 tháng 2 2016

Bài 2 gọi hai số chẵn đó là 2a và 2a+2
ta có 2a(2a+2)=4a^2+4a=4a(a+1)
vì a và a+1 là hai số liên tiếp nên trong hai số này sẽ có ,ột số chia hết cho 2
Suy ra 4a(a+1)chia hết cho 8
Bài 3 n^3-3n^2-n+3=n^2(n-3)-(n-3) 
                            =(n-3)(n^2-1)
                            =(n-3)(n-1)(n+1)

Do n lẻ nên ta thay n=2k+1ta được (2k-2)2k(2k+2)=2(k-1)2k2(k+1)
                                                                         =8(k-1)k(k+1)

vì k-1,k,k+1laf ba số nguyên liên tiếp mà tích của ba số nguyên liên tiếp chia hết cho 6
8.6=48 Vậy n^3-3n^2-n+3 chia hết cho 8 với n lẻ

27 tháng 2 2016

Bài 4 n^5-5n^3+4n=n(n^4-5n^2+4)=n(n^1-1)(n^2-4)
                           =n(n+1)(n-1)(n-2)(n+2)là tích của 5 số nguyên liên tiếp 
Trong 5 số nguyên liên tiếp có ít nhất hai số là bội của 2 trong đó có một số là bội của 4
một bội của 3 một bội của 5 do đó tích của 5 số nguyên liên tiếp chia hết cho 2.3.4.5=120

29 tháng 10 2019

Mí bn giúp mk nhanh nha, mai mk hc òi

Thank you mí bé

29 tháng 10 2019

mk quên nữa, CMR là chứng minh rằng nhé. Mí bn giúp mk nhanh nhanh nha!Thank you!