Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Đặt \(A=n^3+6n^2+8n\)
\(A=n\left(n^2+6n+8\right)\)
\(A=n\left(n^2+2n+4n+8\right)\)
\(A=n\left[n\left(n+2\right)+4\left(n+2\right)\right]\)
\(A=n\left(n+2\right)\left(n+4\right)⋮\forall n\) chẵn
b)Đặt \(B=n^4-10n^2+9\)
\(B=n^4-n^2-9n^2+9\)
\(B=n^2\left(n^2-1\right)-9\left(n^2-1\right)\)
\(B=\left(n-3\right)\left(n-1\right)\left(n+1\right)\left(n+3\right)⋮384\forall n\) lẻ
\(n^4-10n^2+9\)
\(=\)\(\left(n^4-n^2\right)-\left(9n^2-9\right)\)
\(=\)\(n^2\left(n^2-1\right)-9\left(n^2-1\right)\)
\(=\)\(\left(n^2-1\right)\left(n^2-9\right)\)
\(=\)\(\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)
Mà n lẻ nên n có dạng \(2k+1\) \(\left(k\inℤ\right)\)
\(=\)\(\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+3\right)\)
\(=\)\(2k\left(2k+2\right)\left(2k-2\right)\left(2k+4\right)\)
\(=\)\(16k\left(k+1\right)\left(k-1\right)\left(k+2\right)\)
\(=\)\(15k\left(k-1\right)k\left(k+1\right)\left(k+2\right)\)
Lại có :
\(16k\left(k+1\right)\left(k-2\right)\left(k+2\right)⋮16\)
\(15\left(k-1\right)k\left(k+1\right)\left(k+2\right)⋮8,⋮3\)
\(\Rightarrow\)\(15\left(k-1\right)k\left(k+1\right)\left(k+2\right)⋮384\) ( đpcm )
Vậy \(n^4-10n^2+9⋮384\) với mọi n là số nguyên lẻ
Chúc bạn học tốt ~
Bài 2 gọi hai số chẵn đó là 2a và 2a+2
ta có 2a(2a+2)=4a^2+4a=4a(a+1)
vì a và a+1 là hai số liên tiếp nên trong hai số này sẽ có ,ột số chia hết cho 2
Suy ra 4a(a+1)chia hết cho 8
Bài 3 n^3-3n^2-n+3=n^2(n-3)-(n-3)
=(n-3)(n^2-1)
=(n-3)(n-1)(n+1)
Do n lẻ nên ta thay n=2k+1ta được (2k-2)2k(2k+2)=2(k-1)2k2(k+1)
=8(k-1)k(k+1)
vì k-1,k,k+1laf ba số nguyên liên tiếp mà tích của ba số nguyên liên tiếp chia hết cho 6
8.6=48 Vậy n^3-3n^2-n+3 chia hết cho 8 với n lẻ
Bài 4 n^5-5n^3+4n=n(n^4-5n^2+4)=n(n^1-1)(n^2-4)
=n(n+1)(n-1)(n-2)(n+2)là tích của 5 số nguyên liên tiếp
Trong 5 số nguyên liên tiếp có ít nhất hai số là bội của 2 trong đó có một số là bội của 4
một bội của 3 một bội của 5 do đó tích của 5 số nguyên liên tiếp chia hết cho 2.3.4.5=120
Lời giải:
Vì $n$ là số nguyên lẻ nên đặt \(n=2k+1(k\in\mathbb{Z})\)
Ta có:
\(A=n^4-10n^2+9=n^4-n^2-9n^2+9\)
\(=n^2(n^2-1)-9(n^2-1)=(n^2-9)(n^2-1)\)
\(=(n-3)(n+3)(n-1)(n+1)\)
\(=(2k+1-3)(2k+1+3)(2k+1-1)(2k+1+1)\)
\(=(2k-2)(2k+4)(2k)(2k+2)\)
\(=16(k-1)k(k+1)(k+2)\)
Vì $k-1,k,k+1,k+2$ là 4 số nguyên liên tiếp nên chắc chắn sẽ có 2 số chẵn mà trong 2 số chẵn đó có 1 số chia hết cho $4$
\(\Rightarrow (k-1)k(k+1)(k+2)\vdots (2.4)\)
\(\Rightarrow (k-1)k(k+1)(k+2)\vdots 8\)
Cũng thấy rằng \((k-1)k(k+1)\) là tích 3 số nguyên liên tiếp nên \((k-1)k(k+1)\vdots 3\)
Vậy \((k-1)k(k+1)(k+2)\vdots 24\)
\(\Rightarrow A=16(k-1)k(k+1)(k+2)\vdots (16.24=384)\)
Ta có đpcm.
\(n^4-10n^2+9=\left(n^4-9n^2\right)-\left(n^2-9\right)\)
\(=n^2.\left(n^2-9\right)-\left(n^2-9\right)=\left(n^2-1\right)\left(n^2-9\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)
Vì n lẻ \(\Rightarrow n=2k+1\)( \(k\inℤ\))
\(\Rightarrow n^4-10n^2+9=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+3\right)\)
\(=2k.\left(2k+2\right).\left(2k-2\right).\left(2k+4\right)\)
\(=16.k\left(k+1\right)\left(k-1\right)\left(k+2\right)\)
\(=16.\left(k-1\right).k.\left(k+1\right).\left(k+2\right)\)
Vì \(k-1\); \(k\); \(k+1\); \(k+2\)là 4 số nguyên liên tiếp
\(\Rightarrow\left(k-1\right).k.\left(k+1\right).\left(k+2\right)⋮24\)
\(\Rightarrow16.\left(k-1\right).k.\left(k+1\right).\left(k+2\right)⋮384\)
hay \(n^4-10n^2+9⋮384\)( đpcm )
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15