K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2018

a)Đặt \(A=n^3+6n^2+8n\)

\(A=n\left(n^2+6n+8\right)\)

\(A=n\left(n^2+2n+4n+8\right)\)

\(A=n\left[n\left(n+2\right)+4\left(n+2\right)\right]\)

\(A=n\left(n+2\right)\left(n+4\right)⋮\forall n\) chẵn

b)Đặt \(B=n^4-10n^2+9\)

\(B=n^4-n^2-9n^2+9\)

\(B=n^2\left(n^2-1\right)-9\left(n^2-1\right)\)

\(B=\left(n-3\right)\left(n-1\right)\left(n+1\right)\left(n+3\right)⋮384\forall n\) lẻ

23 tháng 10 2018

\(n^4-10n^2+9\)

\(=\)\(\left(n^4-n^2\right)-\left(9n^2-9\right)\)

\(=\)\(n^2\left(n^2-1\right)-9\left(n^2-1\right)\)

\(=\)\(\left(n^2-1\right)\left(n^2-9\right)\)

\(=\)\(\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)

Mà n lẻ nên n có dạng \(2k+1\) \(\left(k\inℤ\right)\)

\(=\)\(\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+3\right)\)

\(=\)\(2k\left(2k+2\right)\left(2k-2\right)\left(2k+4\right)\)

\(=\)\(16k\left(k+1\right)\left(k-1\right)\left(k+2\right)\)

\(=\)\(15k\left(k-1\right)k\left(k+1\right)\left(k+2\right)\)

Lại có : 

\(16k\left(k+1\right)\left(k-2\right)\left(k+2\right)⋮16\)

\(15\left(k-1\right)k\left(k+1\right)\left(k+2\right)⋮8,⋮3\)

\(\Rightarrow\)\(15\left(k-1\right)k\left(k+1\right)\left(k+2\right)⋮384\) ( đpcm ) 

Vậy \(n^4-10n^2+9⋮384\) với mọi n là số nguyên lẻ 

Chúc bạn học tốt ~ 

27 tháng 2 2016

Bài 2 gọi hai số chẵn đó là 2a và 2a+2
ta có 2a(2a+2)=4a^2+4a=4a(a+1)
vì a và a+1 là hai số liên tiếp nên trong hai số này sẽ có ,ột số chia hết cho 2
Suy ra 4a(a+1)chia hết cho 8
Bài 3 n^3-3n^2-n+3=n^2(n-3)-(n-3) 
                            =(n-3)(n^2-1)
                            =(n-3)(n-1)(n+1)

Do n lẻ nên ta thay n=2k+1ta được (2k-2)2k(2k+2)=2(k-1)2k2(k+1)
                                                                         =8(k-1)k(k+1)

vì k-1,k,k+1laf ba số nguyên liên tiếp mà tích của ba số nguyên liên tiếp chia hết cho 6
8.6=48 Vậy n^3-3n^2-n+3 chia hết cho 8 với n lẻ

27 tháng 2 2016

Bài 4 n^5-5n^3+4n=n(n^4-5n^2+4)=n(n^1-1)(n^2-4)
                           =n(n+1)(n-1)(n-2)(n+2)là tích của 5 số nguyên liên tiếp 
Trong 5 số nguyên liên tiếp có ít nhất hai số là bội của 2 trong đó có một số là bội của 4
một bội của 3 một bội của 5 do đó tích của 5 số nguyên liên tiếp chia hết cho 2.3.4.5=120

AH
Akai Haruma
Giáo viên
23 tháng 10 2018

Lời giải:

Vì $n$ là số nguyên lẻ nên đặt \(n=2k+1(k\in\mathbb{Z})\)

Ta có:

\(A=n^4-10n^2+9=n^4-n^2-9n^2+9\)

\(=n^2(n^2-1)-9(n^2-1)=(n^2-9)(n^2-1)\)

\(=(n-3)(n+3)(n-1)(n+1)\)

\(=(2k+1-3)(2k+1+3)(2k+1-1)(2k+1+1)\)

\(=(2k-2)(2k+4)(2k)(2k+2)\)

\(=16(k-1)k(k+1)(k+2)\)

Vì $k-1,k,k+1,k+2$ là 4 số nguyên liên tiếp nên chắc chắn sẽ có 2 số chẵn mà trong 2 số chẵn đó có 1 số chia hết cho $4$

\(\Rightarrow (k-1)k(k+1)(k+2)\vdots (2.4)\)

\(\Rightarrow (k-1)k(k+1)(k+2)\vdots 8\)

Cũng thấy rằng \((k-1)k(k+1)\) là tích 3 số nguyên liên tiếp nên \((k-1)k(k+1)\vdots 3\)

Vậy \((k-1)k(k+1)(k+2)\vdots 24\)

\(\Rightarrow A=16(k-1)k(k+1)(k+2)\vdots (16.24=384)\)

Ta có đpcm.

2 tháng 10 2020

\(n^4-10n^2+9=\left(n^4-9n^2\right)-\left(n^2-9\right)\)

\(=n^2.\left(n^2-9\right)-\left(n^2-9\right)=\left(n^2-1\right)\left(n^2-9\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)

Vì n lẻ \(\Rightarrow n=2k+1\)\(k\inℤ\))

\(\Rightarrow n^4-10n^2+9=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+3\right)\)

\(=2k.\left(2k+2\right).\left(2k-2\right).\left(2k+4\right)\)

\(=16.k\left(k+1\right)\left(k-1\right)\left(k+2\right)\)

\(=16.\left(k-1\right).k.\left(k+1\right).\left(k+2\right)\)

Vì \(k-1\)\(k\)\(k+1\)\(k+2\)là 4 số nguyên liên tiếp

\(\Rightarrow\left(k-1\right).k.\left(k+1\right).\left(k+2\right)⋮24\)

\(\Rightarrow16.\left(k-1\right).k.\left(k+1\right).\left(k+2\right)⋮384\)

hay \(n^4-10n^2+9⋮384\)( đpcm )

5 tháng 4 2017

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15

13 tháng 8 2019

BS là gì vậy bạn???