CM 1/3^3+1/4^3+1/5^3 +...+ 1/n^3 < 1/12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a+b+c)3=(a+b)3+3(a+b)2c+3(a+b)c2+c3
=a3+b3+3ab.(a+b)+3(a+b)2c+3(a+b)c2+c3
=a3+b3+c3+3(a+b)(ab+ac+bc+c2)
=a3+b3+c3+3(a+b)[a.(b+c)+c.(b+c)]
=a3+b3+c3+3(a+b)(b+c)(c+a)
=>dpcm
P=12(5^2+1)(5^4+1)(5^8+1)(5^16+1)
=>2P=24(5^2+1)(5^4+1)(5^8+1)(5^16+1)
=(52-1)(52+1)(54+1)(58+1)(516+1)
=(54-1)(54+1)(58+1)(516+1)
=(58-1)(58+1)(516+1)
=(516-1)(516+1)
=532-1
==>P=(532-1)/2
ta có \(\dfrac{1}{3^3}< \dfrac{1}{3^3-3}\)
\(\dfrac{1}{4^3}< \dfrac{1}{4^3-4}\)
...............
\(\dfrac{1}{n^3}< \dfrac{1}{n^3-n}\)
=> \(\dfrac{1}{3^3}+\dfrac{1}{4^3}+\dfrac{1}{5^3}+....+\dfrac{1}{n^3}< \dfrac{1}{3^3-3}+\dfrac{1}{4^3-4}+....+\dfrac{1}{n^3-n}\)=>\(B< \dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+....+\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\)đặt \(C=\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+....+\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\)
C=\(\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+.....+\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}\)C=\(\dfrac{1}{6}-\dfrac{1}{n\left(n+1\right)}\)
=> C<\(\dfrac{1}{6}\)
mà\(\dfrac{1}{6}< \dfrac{1}{4}\)
=> C<\(\dfrac{1}{4}\)
ta lại có B<C
=> B<\(\dfrac{1}{4}\) (đpcm)
\(\dfrac{2}{5}+\dfrac{2}{3}+\dfrac{2}{4}\)
= \(\dfrac{24}{60}\) + \(\dfrac{40}{60}\) + \(\dfrac{30}{60}\)
= \(\dfrac{64}{60}\) + \(\dfrac{30}{60}\)
= \(\dfrac{47}{30}\)
\(\dfrac{2}{6}+\dfrac{3}{12}\)
= \(\dfrac{4}{12}\) + \(\dfrac{3}{12}\)
= \(\dfrac{7}{12}\)
\(\dfrac{5}{6}\) + \(\dfrac{1}{3}\)
= \(\dfrac{5}{6}\) + \(\dfrac{2}{6}\)
= \(\dfrac{7}{6}\)
\(\dfrac{1}{3}\) + \(\dfrac{5}{12}\) + \(\dfrac{5}{6}\)
= \(\dfrac{4}{12}\) + \(\dfrac{5}{12}\) + \(\dfrac{10}{12}\)
= \(\dfrac{9}{12}\) + \(\dfrac{10}{12}\)
= \(\dfrac{19}{12}\)
\(\dfrac{5}{8}\) + \(\dfrac{4}{7}\)
= \(\dfrac{35}{56}\) + \(\dfrac{32}{56}\)
= \(\dfrac{67}{56}\)
\(\dfrac{7}{3}\) + \(\dfrac{8}{7}\)
= \(\dfrac{49}{21}\) + \(\dfrac{24}{21}\)
= \(\dfrac{73}{21}\)
\(\dfrac{1}{5}+\dfrac{5}{35}\)
= \(\dfrac{7}{35}\) + \(\dfrac{5}{35}\)
= \(\dfrac{12}{35}\)
Câu 1:
a: \(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{2}{5}=\dfrac{20-15+24}{60}=\dfrac{29}{60}\)
b: \(\dfrac{1}{3}-\dfrac{4}{5}+\dfrac{4}{3}=\dfrac{5}{3}-\dfrac{4}{5}=\dfrac{25-12}{15}=\dfrac{13}{15}\)
c: \(=\dfrac{1}{2}+\dfrac{1}{6}-\dfrac{1}{4}+\dfrac{1}{5}\)
\(=\dfrac{30}{60}+\dfrac{10}{60}-\dfrac{15}{60}+\dfrac{12}{60}\)
=37/60
a/(Sửa đề bài) A= 1/2 + 2/22 + 3/23 + 4/24 +..+ 100/2100 => 1/2A = 1/22 + 2/23 + 3/24 +..+ 100/2101 => A - 1/2A = 1/2 + 2/22 +..+ 100/2100 - 1/22 - 2/23 -..- 100/2101 => 1/2A = 1/2 + 1/22 + 1/23 +..+ 1/2100 - 100/2101 Gọi riêng cụm (1/2 + 1/22 +..+ 1/2100) là B => 2B = 1 + 1/2 + 1/22 +..+ 1/299 => 2B-B = B = 1+ 1/2 +1/22 +..+ 1/299 - 1/2 - 1/22 -..- 1/2100 = 1 - 1/2100 => 1/2A = 1 - 1/2100 - 100/2101 Có 1/2A < 1 => A < 2 =>ĐPCM b/ => 1/3C = 1/32 + 2/33 + 3/34 +..+ 100/3101 => C - 1/3C = 2/3C = 1/3 + 2/32 +..+ 100/3100 - 1/32 - 2/33 -..- 100/3101 = 1/3 + 1/32 + 1/33 +..+ 1/3100 - 100/3101 Gọi riêng cụm (1/3 + 1/32 +..+ 1/3100) là D => 3D = 1 + 1/3 +..+ 1/399 => 3D - D = 2D = 1 + 1/3 +..+1/399 - 1/3 -1/32 -..- 1/3100 = 1 - 1/3100 => 2/3C *2 = 4/3C = 1 - 1/3100 - 200/3101 Có 4/3C < 1 => C<3/4 => ĐPCM Tạm thời thế đã, giải tiếp đc con nào mình sẽ gửi sau :)
1/3+1/5 < 1/3 : 1/5
1/3-1/4 =1/3 * 1/4
11/12-11/12 < 2/3-1/4
1/3+1/5<1/3 : 1/5
1/3-1/4=1/3 * 1/4
11/12-11/12<2/3-1/4