Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{99}+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(A=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\)
\(A=\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}\right)+\left(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}\right)\)
Ta có : \(\frac{1}{51}>\frac{1}{52}>...>\frac{1}{75}\), \(\frac{1}{76}>\frac{1}{77}>...>\frac{1}{100}\)nên :
\(A>\frac{1}{75}.25+\frac{1}{100}.25=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
\(A< \frac{1}{51}.25+\frac{1}{76}.25< \frac{1}{50}.25+\frac{1}{75}.25=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)
Vậy \(\frac{7}{12}< A< \frac{5}{6}\)
+A=1/(1.2)+1/(3.4)+...+1/(99.100)
=1/1-1/2+1/3-1/4+....+1/99-1/100
=1/2+1/3-1/4+1/5-1/6+1/7+...-1/98+1/99...
=(1/2+1/3)+(1/5-1/4)+(1/7-1/6)+..+(1/9...
=5/6-(1/4.5+1/6.7+..1/98.99+1/100)<5/6
do -(1/4.5+1/6.7+..1/98.99+1/100)<0
+A=1/(1.2)+1/(3.4)+...+1/(99.100)
=1/2+1/12+1/(5.6)+...+1/(99.100)
=7/12+[1/(5.6)+...1/(99.100)]
>7/12 do [1/(5.6)+...1/(99.100)]>0
Đầu tiên ta chứng minh \(\frac{1}{n.n}< \frac{1}{\left(n-1\right).\left(n+1\right)}\)(n thuộc N*)
Ta có: \(\frac{1}{\left(n-1\right).\left(n+1\right)}=\frac{1}{\left(n-1\right).n+\left(n-1\right)}=\frac{1}{n.n-n+n-1}=\frac{1}{n.n-1}>\frac{1}{n.n}\)
\(S=\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2009^3}< \frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2008.2009.2010}\)
\(S< \frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2008.2009.2010}\right)\)
\(S< \frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2008.2009}-\frac{1}{2009.2010}\right)\)
\(S< \frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2009.2010}\right)\)
\(S< \frac{1}{2}.\frac{1}{2}=\frac{1}{4}\)
=> S < 1/4 (đpcm)
Ủng hộ mk nha ^_-
cho mình hỏi tại sao:
1/2 . (1/1.2−1/2009.2010) = 1/2 . 1/2
Ta có:
1 + 3 có 2 số hạng => 1 + 3 = 2^2
1 + 3 + 5 có ( 5 - 1 ) : 2 +1 = 3 số hạng => 1 + 3 + 5 = (5 + 1 ). 3 : 2 = 3^2
1 + 3 + 5 + 7 có: ( 7 - 1 ) : 2 + 1 =4 số hạng => 1 + 3 + 5 + 7 = ( 7 + 1 ) .4 : 2 = 4^2
...
1 + 3 + 5 + 7 +... + 101 có ( 101 -1 ) : 2 + 1 =51 số hạng => 1 + 3 + 5 + 7 +... + 101 = ( 101 + 1 ) . 51 : 2 =51^2
=> \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{51^2}\)
\(< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{50.51}\)
\(=\frac{1}{4}+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)\)
\(=\frac{1}{4}+\left(\frac{1}{2}-\frac{1}{51}\right)< \frac{1}{4}+\frac{1}{2}=\frac{3}{4}\)
=> B < 3/4