help mik voi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$B=\frac{x^2-2}{x^2-2x+1}\Leftrightarrow x^2(B-1)-2Bx+B+2=0(*)$
Coi đây là một phương trình bậc 2 ẩn $x$, điều kiện cần và đủ để phương trình $(*)$ có nghiệm là:
$\Delta '=B^2-(B-1)(B+2)\ge0 \Leftrightarrow 2 \ge B$
Vậy $B_{max}=2$
Dấu $"="$ xảy ra khi và chỉ khi:
$\frac{x^2-2}{x^2-2x+1}=2\Leftrightarrow x^2-4x+4=0\Leftrightarrow (x-2)^2=0\Leftrightarrow x=2$
\(B=\dfrac{x^2-2}{x^2-2x+1}=\dfrac{\left(2x^2-4x+2\right)-\left(x^2-4x+4\right)}{x^2-2x+1}=\dfrac{2\left(x^2-2x+1\right)-\left(x^2-4x+4\right)}{x^2-2x+1}=2-\dfrac{x^2-4x+4}{x^2-2x+1}=2-\left(\dfrac{x-2}{x-1}\right)^2\le2\)\(B=2\Leftrightarrow x=2\)
-Vậy \(B_{max}=2\)
\(x+\frac{4}{9}=\frac{1}{2}\)
\(x=\frac{1}{2}-\frac{4}{9}\)
\(x=\frac{9}{18}-\frac{8}{18}\)
\(x=\frac{1}{18}\)
Theo công thức tình hình tam giác , ta có :
\(S_{\Delta}=\frac{a.h}{2}\) (với a là đáy , h là chiều cao )
=> \(a.h=S_{\Delta}.2\)
=> \(h=\frac{S_{\Delta}.2}{a}\)(đây là công thức tính chiều cao nếu có đầy đủ dữ kiện của một tam giác)
Một số trường hợp nó sẽ xuất hiện ẩn (ví dụ thiếu a hoặc h , hoặc diện tích ) nếu thế thì lúc đó phải suy luận !
Để 3p + 5 là số nguyên tố
Mà 3p + 5 \(\ge\) 5
=> 3p + 5 là số lẻ
=> 3p là số chẵn
Mà số nguyên tố chẵn duy nhất là 2
Vậy p = 2
Từ p nguyên tố ta xét các trường hợp:
TH1: p=2
3p+5=3.2+5=11( nguyên tố)
=> p= 2 chọn
TH2: p=3
3p+5=3.3+5=14( hợp số)
=>p=3 chọn
Th3: p>3
=> p không chia hết cho 3
=> p chia 3 dư 1 hoặc p chia 3 dư 2
=> p=3k+1 hoặc p=3k+2( k\(\in\)\(_{ℕ^∗}\))
+p=3k+1
3p+5=3.(3k+1)+5=9k+3
Mà 3p+5>3( do p>3)
=> p là hợp số
=> p=3k+1(loại)
+p=3k+2
Làm giống p= 3k+1( hoặc khác)
Rồi loại các trường hợp
=>p=2( thỏa mãn)
Chúc bn học tốt
=> \(\Rightarrow\left(\frac{11}{5}-\frac{11}{7}+\frac{11}{7}-\frac{11}{9}+...+\frac{11}{59}-\frac{11}{61}\right):2=\left(\frac{11}{5}-\frac{11}{61}\right):2=\frac{616}{305}:2=\frac{308}{305}\)
Đặt \(A=\frac{11}{5.7}+\frac{11}{7.9}+...+\frac{11}{59.61}\)
\(\Rightarrow2A:11=\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\)
\(\Rightarrow2A:11=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\)
\(\Rightarrow2A:11=\frac{1}{5}-\frac{1}{61}\)
\(\Rightarrow2A:11=\frac{56}{305}\)
\(\Rightarrow2A=\frac{56}{305}.11=\frac{616}{305}\)
\(\Rightarrow A=\frac{616}{305}:2=\frac{308}{305}\)
Vậy kết quả của phép tính trên là \(\frac{308}{305}\)
a, (3x-1)(x2+2)=(3x-1)(7x-10)
<=>(3x-1)(x2+2)-(3x-1)(7x-10)=0
<=>(3x-1)(x2+2-7x+10)=0
<=>(3x-1)(x2-7x+12)=0
<=>(3x-1)(x2-3x-4x+12)=0
<=>(3x-1)(x-3)(x-4)=0
<=>\(\left[{}\begin{matrix}3x-1=0\\x-3=0\\x-4=0\end{matrix}\right.\)<=>\(\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=3\\x=4\end{matrix}\right.\)
Vậy ft có tập nghiệm S=\(\left\{\dfrac{1}{3},3,4\right\}\)
b,\(\dfrac{t+3}{t-2}+\dfrac{t-2}{t+3}=\dfrac{5t+15}{t^2+t-6}\) (ĐKXĐ:t\(\ne2;t\ne-3\))
<=>\(\dfrac{\left(t+3\right)^2+\left(t-2\right)^2}{\left(t-2\right)\left(t+3\right)}\)=\(\dfrac{5t+15}{t^2-2t+3t-6}\)
<=>\(\dfrac{t^2+6t+9+t^2-4t+4}{\left(t-2\right)\left(t+3\right)}\)=\(\dfrac{5t+15}{\left(t-2\right)\left(t+3\right)}\)
=>2t2+2t+13=5t+15
<=>2t2+2t-5t+13-15=0
<=>2t2-3t-2=0
<=>2t2-4t+t-2=0
<=>(t-2)(2t+1)=0
<=>\(\left[{}\begin{matrix}t-2=0\\2t+1=0\end{matrix}\right.< =>\left[{}\begin{matrix}t=2\left(loại\right)\\t=\dfrac{-1}{2}\left(tmđkxđ\right)\end{matrix}\right.\)
Vậy ft có nghiệm duy nhất x=\(\dfrac{-1}{2}\)
Giải:
a) \(\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\)
Chia cả hai vế cho 3x-1, ta được:
\(x^2+2=7x-10\)
\(\Leftrightarrow x^2-7x+10+2=0\)
\(\Leftrightarrow x^2-7x+12=0\)
\(\Leftrightarrow x^2-4x-3x+12=0\)
\(\Leftrightarrow x\left(x-4\right)-3\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
Vậy ...
b) \(\dfrac{t+3}{t-2}+\dfrac{t-2}{t+3}=\dfrac{5t+15}{t^2+t-6}\) (1)
ĐKXĐ: \(t\ne2;t\ne-3\)
\(\left(1\right)\Leftrightarrow\dfrac{\left(t+3\right)\left(t+3\right)}{\left(t-2\right)\left(t+3\right)}+\dfrac{\left(t-2\right)\left(t-2\right)}{\left(t-2\right)\left(t+3\right)}=\dfrac{5t+15}{\left(t-2\right)\left(t+3\right)}\)
\(\Rightarrow\left(t+3\right)^2+\left(t-2\right)^2=5t+15\)
\(\Leftrightarrow t^2+6t+9+t^2-4t+4=5t+15\)
\(\Leftrightarrow2t^2+2t+13=5t+15\)
\(\Leftrightarrow2t^2+2t+13-5t-15=0\)
\(\Leftrightarrow2t^2-3t-2=0\)
\(\Leftrightarrow2t^2-4t+t-2=0\)
\(\Leftrightarrow2t\left(t-2\right)+\left(t-2\right)=0\)
\(\Leftrightarrow\left(2t+1\right)\left(t-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2t+1=0\\t-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=-\dfrac{1}{2}\left(tm\right)\\t=2\left(ktm\right)\end{matrix}\right.\)
Vậy ...