Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu 4 số nguyên tố đó không có số nào chẵn thì tổng của 4 số là một số chẵn nên chia hết cho 2.
Nếu 4 số nguyên tố đó có số chẵn thì dãy 4 số nguyên tố liên tiếp là:2;3;5;7
Tổng của chúng là:2+3+5+7=17 là số nguyên tố
Nếu cả 4 số nguyên tố đều nhỏ hơn 2 thì 4 số đó phải là số lẻ
=>Tổng 4 số lẻ là số chẵn, lại là số lớn hơn 2 nên tổng không thể là nguyên tố
=>Trong 4 số có 1 số là số 2, các số nguyên tố tiếp theo là 3, 5, 7
Tổng 4 số là:
2+ 3+ 5+ 7= 17
Vậy 17 là số nguyên tố
Đáp số: 2, 3, 5, 7
Đúng thì k cho mình nhé!
a: Trường hợp 1: p=2
=>p+11=13(nhận)
Trường hợp 2: p=2k+1
=>p+11=2k+12(loại)
b: Trường hợp 1: p=3
=>p+8=11 và p+10=13(nhận)
Trường hợp 2: p=3k+1
=>p+8=3k+9(loại)
Trường hợp 3: p=3k+2
=>p+10=3k+12(loại)
Để p + 11 là số nguyên tố thì p là số chẵn (nếu p là số lẻ thì p + 11 là số chẵn \(\Rightarrow p+11⋮2\) mà chia hết cho một số thì không phải là số nguyên tố)
Trong tập hợp các số nguyên tố chỉ có 2 là số chẵn. Vậy p = 2
b) Để p + 8, p + 10 là số nguyên tố thì p là số lẻ (nếu p là số chẵn thì \(p+8⋮2,p+10⋮2\) mà chia hết cho một số thì không phải là số nguyên tố
Nếu p = 3, p + 8 = 3 + 8 = 11 là số NT; p + 10 = 3 + 10 = 13 là số NT (chọn)
Nếu \(p=3k\left(k\in N|k>1\right)\)thì p là hợp số (loại)
Nếu \(p=3k+1\left(k\in N\right)\Rightarrow p+8=3k+1+8=3k+9⋮3\) (loại)
Nếu \(p=3k+2\left(k\in N\right)\Rightarrow p+10=3k+2+10=3k+9⋮3\)
(loại)
Vậy p=3
Để 3p + 5 là số nguyên tố
Mà 3p + 5 \(\ge\) 5
=> 3p + 5 là số lẻ
=> 3p là số chẵn
Mà số nguyên tố chẵn duy nhất là 2
Vậy p = 2
Từ p nguyên tố ta xét các trường hợp:
TH1: p=2
3p+5=3.2+5=11( nguyên tố)
=> p= 2 chọn
TH2: p=3
3p+5=3.3+5=14( hợp số)
=>p=3 chọn
Th3: p>3
=> p không chia hết cho 3
=> p chia 3 dư 1 hoặc p chia 3 dư 2
=> p=3k+1 hoặc p=3k+2( k\(\in\)\(_{ℕ^∗}\))
+p=3k+1
3p+5=3.(3k+1)+5=9k+3
Mà 3p+5>3( do p>3)
=> p là hợp số
=> p=3k+1(loại)
+p=3k+2
Làm giống p= 3k+1( hoặc khác)
Rồi loại các trường hợp
=>p=2( thỏa mãn)
Chúc bn học tốt