K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2021

( x2 - 9 ) . ( x2 + 3 ) = 0 

<=>\(\hept{\begin{cases}x^2-9=0\\x^2+3=0\end{cases}}\)<=>\(\hept{\begin{cases}x^2=9\\x^2=-3\end{cases}}\)

Vì x\(^2\)\(\ge\)0 với mọi x nên x\(^2\)=-3(loại)

x\(^2\)=9  <=>x=\(\pm\)3

Vậy x=\(\pm\)3

Ht

23 tháng 8 2018

HQ
Hà Quang Minh
Giáo viên
16 tháng 8 2023

\(a,5x\left(x^2-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=9\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ b,3\left(x+3\right)-x^2-3x=0\\ \Leftrightarrow3\left(x+3\right)-x\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(3-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\\ c,x^2-9x-10=0\\ \Leftrightarrow x^2+x-10x-10=0\\ \Leftrightarrow x\left(x+1\right)-10\left(x+1\right)=0\\ \Leftrightarrow\left(x-10\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=10\end{matrix}\right.\)

16 tháng 8 2023

a, 5\(x\)(\(x^2\) - 9) = 0

    \(\left[{}\begin{matrix}x=0\\x^2-9=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\) 

Vậy \(x\) \(\in\) { -3; 0; 3}

b, 3.(\(x+3\)) - \(x^2\) - 3\(x\) = 0

    3.(\(x+3\)) - \(x\).( \(x\) + 3) = 0

    (\(x+3\))( 3 - \(x\)) = 0

     \(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)

Vậy \(x\) \(\in\){ -3; 3}

c, \(x^2\) - 9\(x\) - 10 = 0

   \(x^2\) + \(x\) - 10\(x\)  - 10 = 0

   \(x.\left(x+1\right)\) - 10.( \(x-1\)) = 0

        (\(x+1\))(\(x-10\)) = 0

         \(\left[{}\begin{matrix}x+1=0\\x-10=0\end{matrix}\right.\)

           \(\left[{}\begin{matrix}x=-1\\x=10\end{matrix}\right.\)

Vậy \(x\) \(\in\){ -1; 10}

 

29 tháng 10 2021

a: \(\Leftrightarrow\left(x-5\right)\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\\x=1\end{matrix}\right.\)

d: \(\Leftrightarrow\left(x+3\right)\left(x^2-4x+5\right)=0\)

\(\Leftrightarrow x+3=0\)

hay x=-3

a: (x^2+9)(9x^2-1)=0

=>9x^2-1=0

=>x^2=1/9

=>x=1/3 hoặc x=-1/3

b: (4x^2-9)(2^(x-1)-1)=0

=>4x^2-9=0 hoặc 2^(x-1)-1=0

=>x^2=9/4 hoặc x-1=0

=>x=1;x=3/2;x=-3/2

c: (3x+2)(9-x^2)=0

=>(3x+2)(3-x)(3+x)=0

=>\(\left[{}\begin{matrix}3x+2=0\\3-x=0\\3+x=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{2}{3};3;-3\right\}\)

d: (3x+3)^2(4x-4^2)=0

=>3x+3=0 hoặc 4x-16=0

=>x=4 hoặc x=-1

e: \(2^{\left(x-5\right)\left(x+2\right)}=1\)

=>(x-5)(x+2)=0

=>x-5=0 hoặc x+2=0

=>x=5 hoặc x=-2

12 tháng 3 2021

\(\dfrac{x+1}{x-3}-\dfrac{41}{x+3}+\dfrac{x^2+22}{9-x^2}=0\left(ĐKXĐ:x\ne3;x\ne-3\right)\\ \Leftrightarrow\dfrac{x+1}{x-3}-\dfrac{41}{x+3}-\dfrac{x^2+22}{x^2-9}=0\\ \Leftrightarrow\dfrac{\left(x+1\right)\left(x+3\right)-41\left(x-3\right)-x^2-22}{x^2-9}=0\\ \Leftrightarrow x^2+4x+3-41x+123-x^2-22=0\\ \Leftrightarrow-37x+104=0\\ \Leftrightarrow-37x=-104\\ \Leftrightarrow x=\dfrac{104}{37}\left(tmđk\right)\)

Vậy \(x=\dfrac{104}{37}\) là nghiệm của pt.

 

11 tháng 7 2021

a) \(\left(x^2-3x\right)\left(x^2+7x+10\right)=216\Rightarrow x\left(x-3\right)\left(x+2\right)\left(x+5\right)=216\)

\(\Rightarrow x\left(x+2\right)\left(x-3\right)\left(x+5\right)=216\Rightarrow\left(x^2+2x\right)\left(x^2+2x-15\right)=216\)

Đặt \(t=x^2+2x\Rightarrow\) pt trở thành \(t\left(t-15\right)=216\Rightarrow t^2-15t-216=0\)

\(\Rightarrow\left(t+9\right)\left(t-24\right)=0\Rightarrow\left[{}\begin{matrix}t=-9\\t=24\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x^2+2x=-9\\x^2+2x=24\end{matrix}\right.\)

\(TH_1:x^2+2x=-9\Rightarrow x^2+2x+9=0\Rightarrow\left(x+1\right)^2+8=0\) (vô lý)

\(TH_2:x^2+2x=24\Rightarrow x^2+2x-24=0\Rightarrow\left(x-4\right)\left(x+6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-6\end{matrix}\right.\)

b) \(\left(2x^2-7x+3\right)\left(2x^2+x-3\right)+9=0\)

\(\Rightarrow\left(x-3\right)\left(2x-1\right)\left(x-1\right)\left(2x+3\right)+9=0\)

\(\Rightarrow\left(x-3\right)\left(2x+3\right)\left(x-1\right)\left(2x-1\right)+9=0\)

\(\Rightarrow\left(2x^2-3x-9\right)\left(2x^2-3x+1\right)+9=0\)

Đặt \(t=2x^2-3x-9\Rightarrow\) pt trở thành \(t\left(t+10\right)+9=0\)

\(\Rightarrow t^2+10t+9=0\Rightarrow\left(t+1\right)\left(t+9\right)=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-9\end{matrix}\right.\)

\(TH_1:t=-1\Rightarrow2x^2-3x-9=-1\Rightarrow2x^2-3x-8=0\)

\(\Delta=\left(-3\right)^2-4\left(-8\right).2=73\Rightarrow\left[{}\begin{matrix}x=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{3-\sqrt{73}}{4}\\x=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3+\sqrt{73}}{4}\end{matrix}\right.\)

\(TH_2:t=-9\Rightarrow2x^2-3x-9=-9\Rightarrow2x^2-3x=0\Rightarrow x\left(2x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)

 

1 tháng 4 2020

\(a,x^2+4x=-3\Leftrightarrow x^2+4x+3=0\Leftrightarrow\left(x+1\right)\left(x+3\right)=0\)

\(\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)

\(b,3x^2+4x-4=0\Leftrightarrow3x^2+6x-2x-4=0\Leftrightarrow3x\left(x+2\right)-2\left(x+2\right)=0\Leftrightarrow\left(3x-2\right)\left(x+2\right)=0\)

\(\left[{}\begin{matrix}x=-2\\3x=2\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=-2\\x=\frac{2}{3}\end{matrix}\right.\)

\(c,x^2+5x-6=0\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)

\(\left[{}\begin{matrix}x=1\\x=-6\end{matrix}\right.\)

\(d,x^2-6x=-9\Leftrightarrow x^2+6x+9=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

2 tháng 4 2020

cảm ơn thần đồng toán hc nhen