Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có : \(4x+20=0\)
=> \(x=-\frac{20}{4}=-5\)
Vậy phương trình có tập nghiệm là \(S=\left\{-5\right\}\)
2) Ta có : \(3x+15=30\)
=> \(3x=15\)
=> \(x=5\)
Vậy phương trình có tập nghiệm là \(S=\left\{5\right\}\)
3) Ta có : \(8x-7=2x+11\)
=> \(8x-2x=11+7=18\)
=> \(6x=18\)
=> \(x=3\)
Vậy phương trình có tập nghiệm là \(S=\left\{3\right\}\)
4) Ta có : \(2x+4\left(36-x\right)=100\)
=> \(2x+144-4x=100\)
=> \(-2x=-44\)
=> \(x=22\)
Vậy phương trình có tập nghiệm là \(S=\left\{22\right\}\)
5) Ta có : \(2x-\left(3-5x\right)=4\left(x+3\right)\)
=> \(2x-3+5=4x+12\)
=> \(-2x=10\)
=> \(x=-5\)
Vậy phương trình có tập nghiệm là \(S=\left\{-5\right\}\)
1) 4x+20=0
\(\Leftrightarrow\) 4x=-20
\(\Leftrightarrow\) x=-5
Vậy pt trên có tập nghiệm là S={-5}
2) 3x+15=30
\(\Leftrightarrow\) 3x=15
\(\Leftrightarrow\) x=5
Vậy pt trên có tập nghiệm là S={5}
3) 8x-7=2x+11
\(\Leftrightarrow\) 8x-2x=11+7
\(\Leftrightarrow\) 6x=18
\(\Leftrightarrow\) x=3
Vậy pt trên có tập nghiệm là S={3}
4) 2x+4(36-x)=100
\(\Leftrightarrow\) 2x+144-4x=100
\(\Leftrightarrow\) -2x+144=100
\(\Leftrightarrow\) -2x=-44
\(\Leftrightarrow\) x=22
Vậy pt trên có tập nghiệm là S={22}
5) 2x-(3-5x)=4(x+3)
\(\Leftrightarrow\) 2x-3+5x=4x+12
\(\Leftrightarrow\) 2x+5x-4x=12+3
\(\Leftrightarrow\) 3x=15
\(\Leftrightarrow\) x=5
Vậy pt trên có tập nghiệm là S={5}
6) 3x(x+2)=3(x-2)2
\(\Leftrightarrow\) 3x2+6x=3(x2-2x.2+22)
\(\Leftrightarrow\) 3x2+6x=3x2-12x+12
\(\Leftrightarrow\) 3x2-3x2+6x+12x=12
\(\Leftrightarrow\) 18x=12
\(\Leftrightarrow\) x=\(\frac{2}{3}\)
\(a.x^4-16x^2=0\Leftrightarrow\left(x^2+4x\right)\left(x^2-4x\right)=0\)
\(\Leftrightarrow x^2\left(x+4\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x+4=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\\x=4\end{matrix}\right.\)
\(b.\left(x-5\right)^3-x+5=0\)
\(\Leftrightarrow\left(x-5\right)^3-\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left[\left(x-5\right)^2-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\\left(x-5\right)^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\\left(x-5\right)^2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)
a) x4 - 16x2 = 0
<=> x2 ( x2 - 16 ) = 0
<=> \(\left[{}\begin{matrix}x^2=0\\x^2-16=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=0\\x=-4\\x=4\end{matrix}\right.\)
Vậy...
b) ( x - 5)3 - x + 5 = 0
<=> ( x - 5)3 - (x - 5) = 0
<=> (x - 5) [ (x - 5)2 - 1] =0
<=> \(\left[{}\begin{matrix}x-5=0\\\left(x-5\right)^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\\left(x-5\right)^2=1\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=5\\x-5=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)
Vậy...
c) 5(x - 2) = x2 - 4
<=> 5(x - 2) - (x2 - 4) = 0
<=> (x - 2)( 5 - x - 2) = 0
<=> (x - 2)( 3 - x ) = 0
<=> \(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy...
d) x - 3 = (3 - x)2
<=> x - 3 - (x - 3)2 = 0
<=> (x - 3)(1 - x + 3) = 0
<=> (x - 3)( 4 - x ) = 0
<=> \(\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
Vậy...
e) x2 (x - 5) + 5 - x = 0
<=> x2 (x - 5) - (x - 5) = 0
<=> (x2 - 1)( x - 5) = 0
<=> \(\left[{}\begin{matrix}\left(x-1\right)\left(x+1\right)=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=5\end{matrix}\right.\)
,
\(2x-2=8-3x\)
\(\Leftrightarrow\)\(2x+3x=8+2\)
\(\Leftrightarrow\)\(5x=10\)
\(\Leftrightarrow\)\(x=2\)
Vậy...
\(x^2-3x+1=x+x^2\)
\(\Leftrightarrow\)\(x^2-3x-x-x^2=-1\)
\(\Leftrightarrow\)\(-4x=-1\)
\(\Leftrightarrow\)\(x=\frac{1}{4}\)
Vậy...
mấy cái này bấm máy tính là đc òi. giải mất thời gian lắm :))
a: =>5-x+6=12-8x
=>-x+11=12-8x
=>7x=1
hay x=1/7
b: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
\(\Leftrightarrow9x+6-3x-1=12x+10\)
=>12x+10=6x+5
=>6x=-5
hay x=-5/6
d: =>(x-2)(x-3)=0
=>x=2 hoặc x=3
a) ĐKXĐ: x khác 0
\(x+\dfrac{5}{x}>0\)
\(\Leftrightarrow x^2+5>0\) ( luôn đúng)
Vậy bất pt vô số nghiệm ( loại x = 0)
d)
\(\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2}{8}-\dfrac{x+3}{8}\)
\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2-x-3}{8}\)
\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{-5}{8}\)
\(\Leftrightarrow2x+2-4x+4>-15\)
\(\Leftrightarrow-2x>-21\)
\(\Leftrightarrow x< \dfrac{21}{2}\)
Vậy....................
a)\(x+\dfrac{5}{x}>0\left(ĐKXĐ:x\ne0\right)\)
\(\Leftrightarrow\dfrac{x^2+5}{x}>0\)
Mà \(x^2+5>0\)
\(\Rightarrow x>0\)
d)\(\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2}{8}-\dfrac{x+3}{8}\)
\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{2x-2}{12}>\dfrac{-5}{8}\)
\(\Leftrightarrow\dfrac{-x+3}{12}>\dfrac{-5}{8}\)
\(\Leftrightarrow-x+3>-\dfrac{15}{2}\)
\(\Leftrightarrow-x>-\dfrac{21}{2}\)
\(\Leftrightarrow x< \dfrac{21}{2}\)
\(e)\) \(\left|2x-3\right|=x-1\)
Ta có :
\(\left|2x-3\right|\ge0\)\(\left(\forall x\inℚ\right)\)
Mà \(\left|2x-3\right|=x-1\)
\(\Rightarrow\)\(x-1\ge0\)
\(\Rightarrow\)\(x\ge1\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-3=x-1\\2x-3=1-x\end{cases}\Leftrightarrow\orbr{\begin{cases}2x-x=-1+3\\2x+x=1+3\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2\\3x=4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=\frac{4}{3}\left(tm\right)\end{cases}}}\)
Vậy \(x=2\) hoặc \(x=\frac{4}{3}\)
Chúc bạn học tốt ~
\(f)\) \(\left|x-5\right|-5=7\)
\(\Leftrightarrow\)\(\left|x-5\right|=12\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-5=12\\x-5=-12\end{cases}\Leftrightarrow\orbr{\begin{cases}x=17\\x=-7\end{cases}}}\)
Vậy \(x=17\) hoặc \(x=-7\)
Chúc bạn học tốt ~
a) Ta có: \(\frac{3x-2}{6}-\frac{4-3x}{18}=\frac{4-x}{9}\)
\(\Leftrightarrow\frac{3\left(3x-2\right)}{18}-\frac{4-3x}{18}-\frac{2\left(4-x\right)}{18}=0\)
\(\Leftrightarrow9x-6-4+3x-\left(8-2x\right)=0\)
\(\Leftrightarrow12x-10-8+2x=0\)
\(\Leftrightarrow10x-18=0\)
\(\Leftrightarrow10x=18\)
hay \(x=\frac{9}{5}\)
Vậy: \(x=\frac{9}{5}\)
b) Ta có: \(\frac{2+3x}{6}-x+2=\frac{x-7}{9}\)
\(\Leftrightarrow\frac{3\left(2+3x\right)}{18}-\frac{18x}{18}+\frac{36}{18}-\frac{2\left(x-7\right)}{18}=0\)
\(\Leftrightarrow6+9x-18x+36-\left(2x-14\right)=0\)
\(\Leftrightarrow42-9x-2x+14=0\)
\(\Leftrightarrow56-11x=0\)
\(\Leftrightarrow11x=56\)
hay \(x=\frac{56}{11}\)
Vậy: \(x=\frac{56}{11}\)
c) ĐKXĐ: x∉{3;-3}
Ta có: \(\frac{6-x}{x^2-9}+\frac{2}{x+3}=\frac{-5}{x-3}\)
\(\Leftrightarrow\frac{6-x}{\left(x-3\right)\left(x+3\right)}+\frac{2\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\frac{-5\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow6-x+2x-6=-5x-15\)
\(\Leftrightarrow x+5x+15=0\)
\(\Leftrightarrow6x=-15\)
hay \(x=\frac{-5}{2}\)(tm)
Vậy: \(x=\frac{-5}{2}\)
d) Ta có: \(\left(5x+2\right)\left(x^2-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+2=0\\x^2-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=-2\\x^2=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-2}{5}\\x=\pm\sqrt{7}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{-2}{5};\sqrt{7};-\sqrt{7}\right\}\)
e) ĐKXĐ: x∉{4;-4}
Ta có: \(\frac{3}{x-4}+\frac{5x-2}{x^2-16}=\frac{4}{x+4}\)
\(\Leftrightarrow\frac{3\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}+\frac{5x-2}{\left(x-4\right)\left(x+4\right)}-\frac{4\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}=0\)
\(\Leftrightarrow3x+12+5x-2-\left(4x-16\right)=0\)
\(\Leftrightarrow8x+10-4x+16=0\)
\(\Leftrightarrow4x+26=0\)
\(\Leftrightarrow4x=-26\)
hay \(x=\frac{-13}{2}\)(tm)
Vậy: \(x=\frac{-13}{2}\)
a, 2(4x - 7 ) = 3(x + 1) + 18
⇌ 8x -14 = 3x + 3 + 18
⇌ 5x = 35 ⇌ x = 7
→ S = \(\left\{7\right\}\)
b, ( 2x - 1 )2 - 4x ( x - 3 ) = -11
⇌ 4x2 - 2x + 1 - 4x2 + 12 = -11
⇌ 10x = -12
⇌ x = \(-\frac{12}{10}\)
→ S = \(\left\{-\frac{12}{10}\right\}\)
c, ( 2x - 5 )2 - ( x + 2 )2 = 0
⇌ ( 2x - 5 -x + 2 )2 = 0
⇌ ( x - 3 )2 = 0
⇌ x - 3 = 0 ⇌ x = 3
→ S = \(\left\{3\right\}\)
d, ( x - 6 ) ( x + 1 ) = 2(x + 1)
⇌ ( x - 6 - 2 ) ( x+ 1) = 0
⇌ x2 - 7x - 8 =0
⇌ ( x - 8 ) ( x + 1 ) = 0
⇒\(\left\{{}\begin{matrix}x-8=0\\x+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\x=-1\end{matrix}\right.\)
→ S = \(\left\{8;-1\right\}\)
e, \(\frac{x-3}{2}=2-\frac{1-2x}{5}\)
⇌ 5( x - 3) = 20 - 2(1 - 2x)
⇌ 5x - 4x = 15 + 20 + 2
⇌ x = 37
→ S = \(\left\{37\right\}\)
g, \(\frac{3x+2}{2}+\frac{5-2x}{3}=\frac{11}{6}\)
⇌ 3(3x + 2) + 2(5 - 2x) = 11
⇌ 6x + 6 + 10 - 4x = 11
⇌ 2x = -5
⇌ x = \(-\frac{5}{2}\)
→ S = \(\left\{-\frac{5}{2}\right\}\)
h, \(\frac{x-2}{x+2}-\frac{3}{x-2}=\frac{9x-66}{x^2-4}\)
⇌ (x - 2)2 - 3(x - 2) = 9x - 66
⇌ x2 - 4x + 4 - 3x - 6 = 9x - 66
⇌ x2 -16 + 64 = 0
⇌ (x - 8)2 = 0
⇌ x - 8 = 0
⇌ x = 8
→ S = \(\left\{8\right\}\)
a)(x+1)(x2+2x)=(x+1)x(x+2)=0
\(=>\left\{{}\begin{matrix}x+1=0=>x=-1\\x=0\\x+2=0=>x=-2\end{matrix}\right.\)
b)x(3x-2)-5(2-3x)=x(3x-2)+5(3x-2)=(3x-2)(x+5)=0
\(=>\left\{{}\begin{matrix}3x-2=0=>x=\dfrac{2}{3}\\x+5=0=>x=-5\end{matrix}\right.\)
c)\(\dfrac{4}{9}-25x^2=\left(\dfrac{2}{3}\right)^2-\left(5x\right)^2=\left(\dfrac{2}{3}-5x\right)\left(\dfrac{2}{3}+5x\right)\)
=0
\(=>\left\{{}\begin{matrix}\dfrac{2}{3}-5x=0=>x=\dfrac{2}{15}\\\dfrac{2}{3}+5x=0=>x=\dfrac{-2}{15}\end{matrix}\right.\)
d)\(x^2-x+\dfrac{1}{4}=x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2=\left(x-\dfrac{1}{2}\right)^2=0\)
\(=>x-\dfrac{1}{2}=0=>x=\dfrac{1}{2}\)